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Preface to the Second Edition

This is the volume that has seen the fewest changes in the new edition, if we ignore typograph-
ical corrections and minor improvements of wording. Most of them take the form of additional
references to the vast amount of work that has been done in our subject since the previous
edition appeared.

Some more substantial corrections and additions have been made to the discussion of
Rubik’s Cube in Chapter 24, based on the ideas of several authors. We have also added a
small section to that chapter to report on Marc Paulhus’s solution to the question raised by
one of us many years ago: “Can a game of Strip-Jack-Naked continue for ever?

The Game of Life still has many adherents more than 30 years after its invention, and some
of their discoveries and comments have been incorporated in Chapter 25.

We thank everyone who has written to us with suggestions for improving the book, even
when we have not taken their advice. We also thank everyone at A K Peters who has worked
on the book, in particular Jon Peters, who has fixed some of the illustrations. Additional
thanks go to A and K themselves for having undertaken its republication without knowing
what they were in for!

Elwyn Berlekamp, University of California, Berkeley
John Conway, Princeton University
Richard Guy, The University of Calgary, Canada

February 7, 2004
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Preface to the Original Edition

Does a book need a Preface? What more, after fifteen years of toil, do three talented
authors have to add.

We can reassure the bookstore browser, “Yes, this is just the book you want!”

We can direct you, if you want to know quickly what’s in the book, to page xvi. This in
turn directs you to volumes 1,2,3 and 4,

We can supply the reviewer, faced with the task of ploughing through nearly a thousand
information-packed pages, with some pithy eriticisms by indicating the horns of the polylemma
the book finds itself on. It is not an encyclopedia. It is encyclopedic, but there are still
too many games missing for it to claim to be complete. It is not a book on recreational
mathematics because there's too much serious mathematics in it. On the other hand, for us, as
for our predecessors Rouse Ball, Dudeney, Martin Gardner, Kraitchik, Sam Loyd, Lucas, Tom
O’Beirne and Fred. Schuh, mathematics itself is a recreation. It is not an undergraduate text,
since the exercises are not set out in an orderly fashion, with the easy ones at the beginning,.
They are there though, and with the hundred and sixty-three mistakes we've left in, provide
plenty of opportunity for reader participation. So don’t just stand back and admire it, work
of art though it is. It is not a graduate text, since it’s too expensive and contains far more
than any graduate student can be expected to learn. But it does carry you to the frontiers of
research in combinatorial game theory and the many unsolved problems will stimulate further
discoveries.

We thank Patrick Browne for our title. This exercised us for quite a time. One morning,
while walking to the university, John and Richard came up with “Whose game?” but realized
they couldn’t spell it (there are three tooze in English) so it became a one-line joke on line
onhe of the text. There isn't room to explain all the jokes, not even the fifty-nine private ones
(each of our birthdays appears more than once in the book).

Omar started as a joke, but soon materialized as Kimberly King. Louise Guy also helped
with proof-reading, but her greater contribution was the hospitality which enabled the three
of us to work together on several occasions. Louise also did technical typing after many drafts
had been made by Karen McDermid and Betty Teare.

Our thanks for many contributions to content may be measured by the number of names
in the index. To do real justice would take too much space. Here’s an abridged list of helpers:
Richard Austin , Clive Bach, John Beasley, Aviezri Fraenkel, David Fremlin, Solomon Golomb,
Steve Grantham, Mike Guy, Dean Hickerson, Hendrik Lenstra, Richard Nowakowski, Anne
Scott, David Seal, John Selfridge, Cedric Smith and Steve Tschantz.
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& Preface XV

No small part of the reason for the assured success of the book is owed to the well-informed
and sympathetic guidance of Len Cegielka and the willingness of the staff of Academic Press
and of Page Bros. to adapt to the idiosyncrasies of the authors, who grasped every opportunity
to modify grammar, strain semantics, pervert punctuation, alter orthography, tamper with
traditional typography and commit outrageous puns and inside jokes.

Thanks also the the Isaak Walton Killam Foundation for Richard’s Resident Fellowship
at The University of Calgary during the compilation of a critical draft, and to the National
(Science & Engineering) Research Council of Canada for a grant which enabled Elwyn and
John to visit him more frequently than our widely scattered habitats would normally allow.

And thank you, Simon!

University of California, Berkeley, CA 94720 Elwyn Berlekamp
University of Cambridge, England, CB2 1SB John Conway
University of Calgary, Canada, T2N 1N4 Richard Guy
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Solitaire Diamonds!

Twinkle, twinkle little star,
How I wonder what you are!
Up above the world so high
Like a diamond in the sky!
Jane Taylor, The Star.

We are all in the dumps, For diamonds are trumps;
The kittens are gone to St. Pauls.
the babies are bit, the Moon's in a fit,
And the houses are built without walls.
Nursery Rhyme

If you've followed everyting in Winning Ways so far, you're probably finding it hard to get
people to play with you, so you will need something to do on your own. Here are our favorite
solitaire diamonds:

The classical game of Peg Solitaire, treated by old and new methods in Chapter 23.

A host of puzzles, pastimes and other party tricks in Chapter 24.
And finally, every automaton will enjoy playing the notorious game of Life (Chapter 25).
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23

Purging Pegs Properly

We can merely mention bean-bags, peg-boards, size and form boards,
as some of the apparatus found useful for the purpose of amusing
and instructing the weak-minded.

Allbutt’s Systematic Medicine, 1899, VIII, 246.

Figure 1. The English Solitaire Board.

Figure 1 shows the English Board on which the game of Peg Solitaire is usually played. It's
easier to refill the board if you use marbles, but pegs are steadier when it comes to analysis.

The game is played (by one person of course) as shown in Fig. 2. If in some row or column
two adjacent pegs are next to an empty space as in Fig. 2(a), then we may jump the peg p over
r into the space s (Fig. 2(b)). The peg r that has been jumped over is then removed (Fig. 2(c)).
Jumps are like captures in Draughts or Checkers, but they never take place diagonally, but
only in the East, South, West or North directions.
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. .

B s A

! ! J T N - I

N S s S kJ
(a) {c)

Figure 2. Making a Solitaire Jump.

Central Solitaire

The standard problem is to start as in Fig. 1, with a peg in every hole except the centre, and
then aim, by making a series of these jumping moves, to reduce the situation to a single peg

in the central hole (Fig. 3).

Figure 3. Success!

Like many card solitaire (“Patience”) games, Solitaire is probably called a game rather
than a puzzle because one often feels one is playing against an invisible opponent. Many
people not normally interested in puzzles will recall some period of their lives when they have
strugeled with this opponent for days at a time; yet it seems that most of those who can
readily solve simple Solitaire problems have been taught the trick by someone else as a child.
It is rare indeed to find someone who has acquired the knack single-handed, and surely Peg
Solitaire (nowadays selling in many parts of the world under the trade name of Hi-Q) must
be the hardest game of its kind to have gamed substantial popularity. It is an ideal game to
while away hours of enforced idleness during illness or long journeys, and perhaps we should
believe those old books which tell us that the game was invented by a French nobleman who
first played it on the stone tiles of his prison cell.
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If you haven’t played this game before, put down this book, go out right now, buy a board,
and try to solve the Central Solitaire Game. Those of you who are left will have plenty of time
to read the chapter before the novices come back in a week or so—why not learn a particularly
elegant solution to impress them all?

Figure 4. A Move of Five Jumps.

Dudeney, Bergholt and Beasley

Since you must already know how to solve the problem, you’ll want to do it quickly, so let’s
agree to count any number of consecutive jumps with a single peg as just one move. Figure 4
shows such a move—the five shaded jumped-over pegs are to be taken off as part of the move.

a | b| c

Z

=

=
=yl Il B
=< | o] O

o

Figure 5. Labelling the Places.
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e f‘_ J O:, '
| <
o [1]] h, a5 [
(«:—'5 [ 6——— )
8
FM H2 AP
13
10 '—") <— <1 ()
9 ]
L 12
5% ir_?, R b 01
H H 18L‘w 19—

y

16— |

Figure 6. Dudeney’s 19-move Solution for Central Solitaire.
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In order to describe a solution concisely, we label the places as in Fig. 5, and write S; for
a jump from S to t and shorten this to S when we don’t need to indicate the direction. The
5-jump move of Fig. 4 is Ly, which we will abbreviate to Ls when it is unambiguous (we
can’t do that here since L could also mean Ly and various other things). In this notation,
Dudeney’s elegant 19-move solution of his Central Solitaire problem is

eJOy fmhoap FMHyAP c3g:CsGo pgo,

and this is set out in Fig. 6.

Dudeney thought that the number 19 could not be improved, but, in The Queen four years
later, Ernest Bergholt gave an 18-move solution, unfortunately not quite as symmetrical as
Dudeney’s:

elePDGJmsigLsCpAsMsasdso.

Here the notation Lj; is ambiguous, but the intended 5-jump move is the one depicted in Fig. 4.
The move dj is also ambiguous, but either interpretation leads to the same result.

The whole truth emerged only 52 years later, in 1964, when John Beasley used the methods
described in this chapter to prove that a solution in fewer than 18 moves is impossible. With
Beasley's kind permission we publish his proof for the first time in the Extras to this chapter.
It is very condensed, so the reader who wishes to follow it should first study the chapter
diligently!

Packages and Purges

It’s nice to be able to know the effect of a whole collection of moves hefore you make them,
so let us sell you some of our instant packages. When a package is used to clear all the pegs
from a region, we call it a purge.

G Pl catalyst

Figure 7. Purging Three Pegs.

Figure 7 shows the handy little 3-purge, our most popular package. When three pegs—the
tail, the body and the head—are adjacent in line, this will remove them all, provided the head
has an additional peg on one side of it, and an empty space on the other, as in the figure.
Move 1 of the package jumps the additional peg over the head; move 2 jumps tail over body
into head; and move 3 jumps back owver the head to its original position. Since the peg and the
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space on either side of the head are essential to the package, but are restored to their original
state, we call them the catalyst.

In Figs. 8(a) to 8(h), @ indicates a peg to be purged, O a space to be filled, and XX
indicate catalyst places of which one must be full and the other empty. In most of the purges
there are two catalyst moves in opposite directions over the same position (which may initially
be either a peg or an empty space) and the remaining moves form one or two packages which
deliver pegs to that place. For the 3-purge (8(a)), one peg was already in place and the second
is delivered by a single jump which we might call the “2-package” (8(b)). The 6-purge is
usually accomplished (8(c)) using a 2-package to deliver the first peg and a 4-package (8(d))
for the second.

® ®
® ®
X ®X o

(a) The 3-purge {(b) The 2-package

| X x -

(¢} The 6-purge {d) The 4-package

®
O
L
000

{e) The L-purge {f) The L-package

® X
X X
X 000
o | o000

(g) The 2-purge (h) Another 8-purge catalyst

Figure 8. A Parcel of Packages.
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The L-purge (8(e)) and L-package (8(f)) are very useful indeed. The first peg for the L-
purge is already in place and an L-package supplies the second. The first two moves of the
L-package form a 2-purge (8(g)) which can also be used in other situations. The catalyst for
the 2-purge is restored in a rather unorthodox way, as is the alternative catalyst for the 6-purge
shown in Fig. 8(h).

Packages Provide Perfect Panacea

Plenty of problems are performed with panache by people who purchase our packages.

In Fig. 9 we can see at a glance a solution for Central Solitaire, consisting of two 3-purges
(1 and 2) followed by three 6-purges (3, 4 and 5) and an L-purge , leaving only the final jump
to be made. You should check that every purge has the catalyst it needs.

Figure 9. Central Solitaire Painlessly Packaged.

Instead of Central Solitaire we can consider other one-peg reversal problems: start with
only one empty space and finish with only one peg in the same place. Figures 9 and 10 show
that most such problems can be solved by purely purgatory methods, but in Fig. 10(e) we
start with a 4-package indicated by the arrow (1), and the notorious problem (b) needs more
complicated methods.

To clarify our notation we explain our solution for (b) in detail. For the first jump we have
no choice but to jump from the place marked 1 in the figure. Our second jump, from the place
marked 2, clears a space which enables us to make the L-package, indicated by the bent arrow
(3). We now have a catalyst for the L-purge (4) which is followed by a single jump from the
place marked 5. We are now on the home run with purges 6, 7 and 8 followed by a single jump
from place 9. If the reader plays this through she will find that we have set up a spectacular
5-jump move from the place marked 105.

The reader might like to try her hand at some two-peg reversal problems—start with just
two spaces on the board and end with just two pegs in those places.
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Figure 10. The Other Six Olle—i’eg Reversals.
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The Rule of Two and the Rule of Three

Here is another type of problem (Fig. 11). We start with just one empty space and declare
that some particular peg is to be the finalist (last on the board). In the example the initial
hole is at position d and we want the finalist to be the peg that starts at b. Where must it end?

Figure 11. Find Where the Finalist Finishes!

There is an obvious Rule of Two—the peg can only jump an even number of places in
either direction, as indicated by the arrows in Fig. 11(a). But there is a much more interesting
Rule of Three. Oune of the consequences of this is that if we start with a single space on the
English board and end with a single peg, then we can move in steps of three from the initial
space to that of the finalist, as in Fig. 11(b).

The Rule of Two and the Rule of Three, taken together, can lead to surprises. See how
they point to the unique finishing place H in Fig. 11(a) and (b). Now that we know that H
is the only place permitted by both the Rule of Two and the Rule of Three, the problem is a
lot easier than it might have been. Figure 12 shows a neatly packaged solution; how did we
find it?

Figure 12. (a) The Position after the First Two Moves. (b) The Position before the Last Two Moves.
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What we did was plan the 3-jump move 93 which puts the finalist in his place, and our
second jump was to clear a space for this. But after we made this second jump most of the
pegs parcelled themselves up naturally. The one apparent exception was the peg starting just
right of the finalist, and the best way of clearing this seemed to be to use it as in move 85 to
provide the final jump.

For other problems, gentle reader, we recommend a similar procedure. Plan the last few
moves of your solution and let the first few be used to smooth the way for these and leave the
remaining pegs in tidy packages. Remember that the catalyst for the very last purge must be
among the pegs in your planned finale.

Here’s a nice finalist problem for you. Let the initial hole be in position B and the finalist
be the peg which starts at .J. Can you end with only this peg?

Some Pegs Are More Equal Than Others

How do we explain the Rule of Three? The best way is to introduce “multiplication™ for
Solitaire positions. In Fig. 13(a) the two adjacent pegs s and ¢ can obviously be replaced by
a single peg at r, so we write

st =,

D o O o U
o o

£
U

Figure 13. Multiplying Pegs.
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but Fig. 13(b) shows that we can also write
st = u.

Now Euclid tells us that things that are equal to the same thing are equal, so we must agree
that r = u.

Places three apart
in any line are
considered equal.

Let’s see what other rules of algebra tell us. Combining Figs. 13(b) and 13(c), we have
st =u, tu=s,
sty = us,

or, cancelling,
2 =1,

which seems to tell us that

two pegs in the
same place cancel.

Remember how catalysts do precisely this—they remove two pegs which are delivered to the
same place by the other moves of a purge. In fact it follows from our algebra that

any set of pegs
that can be
purged cancel.

For example, in Fig. 13(c), tu = s, so

stu = ss = 1.

Three adjacent pegs

in line cancel, (3-purge)
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ru = uu = 1.

Two pegs at distance

2-purge
three cancel. (2-purge)

T
iz

Figure 14. s = rt.

Reiss’s 16 Solitaire Position Classes

We've now said enough to see how our algebra cuts the Solitaire board down to size, for since
places three apart are algebraically equal, every place is equal to one of the nine in the middle
of the board (Fig. 15); for example a = p. Now we can use our most recent rule to express
each of these nine in terms of the four corner ones, i, k, I, K:

j =ik P =1k
p=iK J=IK
r = jJ = ikIK.

Figure 15. Stripping Down to Essentials.
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Since equal pegs cancel,

every Solitaire position

is algebraically equal to
one of the 16 combinations

of the places i, k, I, K.

THE SIXTEEN REISS CLASSES

Figure 16(a). Found near Split? Figure 16 (b). Reduced to Size.

The position of Fig. 16(a) was found unattended in a Jugoslav railway train. Those filmy
packages and letters weren't there—but just came into our mind’s eye when we pondered the
possibility of reducing the position to a single peg. Where must this single peg be?

Our rules allow us to cancel those four packages of three and then the four pairs RR, S,
TT, UU, so that the position is algebraically equal to the four shaded pegs. We then can
move two of these three spaces and cancel another 3-package as in Fig. 16(b) to see that the
position equals a single peg at I. So the Rule of Three says that the finalist must be at I, L
or f. For which of these places can you find solutions?

How do we know that Reiss’s sixteen classes are really different? Might not our algebraic
rules imply perhaps that i = £ K? No! For consider the numbers +1 shown in the places of
Fig. 17(i). Whenever three of these numbers

r, s, t

are adjacent in line, we really do have
rs =t,

and from this we can see that all our algebraic rules hold for these numbers. But in this system
we have

i=-1, k=K =+1,
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so we can’t prove ¢ = kK! In fact Figs. 17(i, k, I, K) show that all 16 combinations of the
pegs i, k, I, K are algebraically distinct: for example the value on Fig. 17(i) is —1 just if i is
involved in the combination. Making a Solitaire move or applying any of our algebraic rules
will never change the value in any of the four Figures.

e (-1 ]-1

+1 |+ +1 +1i+1]+1
[+ |~ [~ [+t] - ]~ | [~ [+ [t [+1]-1
~([+1]~1 [~ |+ -1 ] IR
[+ [+ |+ [+ [+ ]+ H[+1 [+1 ][+ |+4] +1 [+

=111 |+ + |- |—1

—f-1]+1] @ H[-1]<1] &)

+H[-1- 1|~ |+1
Hi-1-1 A
P DY P A D) ) A |+ |+
mimiksiiseiEalts =1+ [+ |1 ]
=1 (=1 |+1 =1 |1 |+ |1 ~{ |+t |||+t~ |1
+1|+1|+1 +1|+1 141
+ |- -1 (D ~1 [-1[+1] (K)

Figure 17. “Answers” to the Algebra.

In algebraic language, the first thing we told you about the Rule of Three may be restated—
a position with just one empty space is algebraically equal to the complementary position
in which only that place is full. More generally,

any position on the English board
is algebraically equal to the
complementary position which has
empty spaces replacing pegs and
pegs replacing empty spaces.

For our rules allow us to complement any line of three adjacent places, and the whole board
can be parcelled into such threes.
This property fails for the Continental Board.
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The Continental Board

The Continental Board which has the four extra holes at y, z, ¥, Z in Fig. 5. So no reversal
problems are possible on this board. Which of the problems which start with a single hole and
end with a single peg are solvable on this board? See the Extras.

Playing Backwards and Forwards

“The game called Solitaire pleases me much. I take it in reverse order. That is to say
that instead of making a configuration according to the rules of the game, which is to
jump to an empty place and remove the piece over which one has jumped, I thought it
was better to reconstruct what had been demolished, by filling an empty hole over which
one has leaped.”

Leibniz.

The famous philosopher plainly thought that playing Solitaire backwards was different from
playing it forwards, but really it’s exactly the same game! For let’s see what happens when he
makes one of his backward moves from Figs. 18(a) to 18(c). Leibniz regards this as jumping
piece t into hole r and filling the empty hole s over which he has leaped, but Fig. 18(b) shows
that we can regard him as jumping the hole at r over the hole at s into the piece at t and
removing the hole over which he has jumped. (Of course to remove a hole he inserts a piece!)

Figure 18. The Philosophy of Leibniz.

Backwards Solitaire is just

forwards Solitaire with the

notions “empty” and “full”
interchanged.

TIME-REVERSAL = ANTI-MATTER?
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This can be useful as well as interesting. A quite spectacular Solitaire finale happens in
Beasley’s remarkable 16-move solution of the i-reversal problem:

apea FogdMoIT AP fiC3Gm . ...

After 14 of the 16 moves the board still seems quite full (Fig. 19(a)) but can be cleared to
a single peg in just 2 moves. (Can you find them?)

-3 3
o YL SN . S A
T 1 ?‘i b3 { 3
Y Ry
e

Figure 19. Two Moves to Go! ... And How to Get Back?

How would you find the moves leading up to this positron? The time-reversal trick should
make it easy. Instead of reducing a position with only one space, at i, to Fig. 19(a), try to
reduce the complementary position (Fig. 19(b)) to just one peg at i. If you've been doing your
homework and practising diligently, you won't find this too hard. You too can astonish your
friends with grand finales to other Solitaire problems set up by the time-reversal trick.

Pagoda Functons

Reiss’s algebraic theory (known to many!) applies even when we allow you to make moves
backward in time (like Leibniz) as well as the ordinary forward ones. Of course this lets you
take back any of your bad moves, but you may also “undo” moves you haven't even made! If
two positions are in different Reiss classes, then we can never get from one to the other by
normal moves, by Leibniz's backward moves nor by any mixture of the two.

Unfortunately this means, of course, that the Reiss theory can never tell you when you've
made a bad move, because the Reiss class never changes. You need something like the Pagoda
Functions (known to few!) we are about to show you, that can change when you make a move,
albeit in a restricted way. Mike Boardman was one of those who helped us to develop these.

Those friends of yours should now be back from the store with their Solitaire boards, so
why not present them with a couple of innocent-looking problems? Since these are reversal
problems, your friends won’t be able to prove them impossible even if they've got as far as the
last section.

The two problems are shown in Figs. 21(a) and (b) where circles show the only places which
are initially empty and which must also be the only places which are finally full. Figures 21(c)
and (d) show two pagoda functions which prove the problems impossible. In general, if pag is
any such function and X any Solitaire position, we shall write
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pag X

for the sum of the numbers that pag assigns to the pegs which are present in X.

partitioned into smaller positions ¥ and Z, then, in our algebraic notation we have
X=Y2Z

and
pag X = pag YV + pag Z.

so that pagoda functions behave like logarithms.

Figure 20. The Golden Pagoda.

819

If X is
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Figure 21. Two Impossible Reversal Problems.

The essential property which defines pagoda functions is that no move may increase the
value. To check this condition you must make sure that

THE PAGODA FUNCTION CONDITION

pag r+pag s > pag t

holds for every conceivable Solitaire jump r over s into t.
CHECK THIS CONDITION NOW IN FIGURES 21(c) AND (d)!

When you've done that you will see the impossibility of our two problems, since the pag
(Fig. 21(c)) of the initial position in 21(a), namely 4, can’t be increased to 6, the pag of the
final position; nor can 8 be increased to 10 (Figs. 21(b) and (c)).

In Fig. 22 we show the pagoda functions you're most likely to find useful; so you'd better
check the Pagoda Function Condition for each of them! The values in the blank spaces are
zero and you can make any of the indicated swaps. Figures 22(c, d, h, and v) are obvious
pagoda functions since they just indicate all the places that a given peg can go to. The 12
places in 22(c) are called corners and the 5 in 22(d) are the dodos, because one of the easiest
mistakes you can make is to let your dodos become extinct when you need one in your final
position. Those extra minus ones often make 22(a) and (b) more useful than (h) and (v).
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Figure 22. Some Useful Pagoda Functions.

The Solitaire Army

A number of Solitaire men stand initially on one side of a straight line beyond which is an
infinite empty desert (Fig. 23). How many men do we need to send a scout just 0, 1, 2, 3, 4,
or b paces out into the desert?

?

Figure 23. How About Sending a Scout Out?
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It’s not hard to see that the answers for (), 1, 2 and 3 paces are 1, 2, 4 and 8 men, so
you might guess that the next two answers are 16 and 32. But in fact no less than 20 men
are needed to get 4 paces out. Can you find the two possible configurations of 20 men? (See
the Extras.)

For 5 paces the answer is even more surprising—it is impossible to send a scout five paces
into the desert , no matter how large an army we hire! The pagoda function which proves
this is shown in Fig. 24. It was the shape of the graph of this function (Fig. 20) which first
suggested the name “pagoda”. The number o is determined by the golden ratio:

o = 1(\/5—1)=n-618...,
2
4o = 1
1
a
0.2
0,4 0_3 O,Al-
o.ﬁ 0,5 0.11- aS 0_6
ﬂ.lU 09 0_8 O_‘.f Gﬁ US 0'6 o.'-" G.H 0.9 UIO
0,1‘1 [}.10 0.9 o.ﬂ o.']‘ 66 G.T a.H 0.9 0.10 0.1_1
all 010 0.9 G.B 0.7 68 0.9 O.I.U o.].l
o,]l 0.10 0.9 G.S 0.9 a.lU o.]l
0,11 G.‘lﬂ 69 G_lﬂ o.ll
ﬂ.|v|+.'> a.n-i--i 1:’.l'r+3 am+2 6u+1 0'" o_rr+l c|_||-l—2 O.JH':! an+4 o_n+S

Figure 24. Pagoda Function for the Solitaire Army.
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By some easy mathematics we have

o n—2

n =0 !

g™ - O_n+l } GTH—E, +

so that the total score of the line whose middle element is o™ is

G‘_n—z + O_(n-l—l)—z _ O_n—.‘]!
and the total score of this line and all lower lines is
n—a3
o _E
— G‘,'ﬁ. )
l—0o

In particular, the sum of all the men on or below the ¢® line is exactly 1, so no finite number
of these men will suffice to send a scout to the place whose score is 1. But infinitely many men
are almost enough, because we once showed that if any man of our army is allowed to carry
a comrade on his shoulders at the start, then no matter how far away the extra man is, the
problem can now be solved.

Managing Your Resources

Your score on a pagoda function is in some sense a measure of your resources, which you
should not consume too rapidly. But mere worldly goods are not enough: they must be
capably managed to preserve a balance between your commitments in various directions.
The Balance Sheet of Fig. 25 has been cunningly devised to do just this. The subtlety
of the English board is that you are often forced to consume assets in order to maintain the

! g b7

b aff bp

x ba b caff | bf | Buff | =«

b axfi | b

b1 # 1b7'B

Figure 25. The Balance Sheet.
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balance, as measured by the greek letters & and /3, of your position in the North-South and
East-West directions. The latin letters a,b and ¢ measure the assets on a number of pagoda
functions simultaneously (a and b for Figs. 22(a) and 22(b) and abc? for Fig. 21(c)).
To estimate the overall capacity of a position, find the product of the resources of all its
pegs in Fig. 25, using the relations
a? = ;‘92 = 1.

A problem has two such products, the raw product (for its initial position), which must
be taken to the finished product (for the final position) while consuming the available

resources:

raw product .
—————————— = available resources.
finished product

In Fig. 26, all the jumps that change the product are shown to do so in units of sizes

[ acy Clk QZ(.’._IQ = a

b b3 el b3 =B b

so your available resources will only be productive if they can be made up of such units.
Central Solitaire, for example, has raw product a*b* and finished product ca/3 so that its
available resources are

a’b? = a*brcrags.
caf3 '
= ca
‘
th A i
ol T 1
rr-a B b
e Coc

Figure 26. Using Resources in Various Units.
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In Dudeney’s solution only the opening and closing few moves actually use any of these:

move I e J O, fmhoapE M Hy APecogs CaGa Py o
resources 1 A ¢3 B.ea 4 free moves — l.a.llaal B

Unproductivity

Many problems are impossible for the simple reason that

b2a and a?(3 are
unproductive!

Why is this? In the case b?a, for example, we are hamstrung for lack of a’s, so the o forces
us to make a jump ca, leaving only b%c~! for the remaining moves, in which ¢~! demands a
move b’c™!3 = B, and we then have no assets with which to adjust the remaining 3.

The Prodigal Son’s Opening

Jump into centre; jump over centre;
jump into centre; jump back over centre;

is the only way Central Solitaire can go wrong in as few as four moves. What’s so bad about
these moves? The prodigality lies in the second and fourth moves which both use ca or both
use ¢3 and therefore leave only

a*bic'af/ e = atbic3ap

for the remaining moves. But

a*bc3ap

is unproductive!

For the only way to cope with ¢~% without overspending either a or b is to use the units
A A Bor A,B, B
which leave only the unproductive products
b or a?f.

Of course the same argument shows that ne two moves in any solution of Central Solitaire can
have product c2.
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Can you find the only way (Fool’s Solitaire) of getting absolutely peghound (unable to
move) in six jumps? And can you Succour the Sucker by solving the position reached after
five of these moves? And can you flag vourself down to another peghound position in as few
as ten jumps from the start? See the Extras.

Deficit Accounting and the G.N.P.

The deficit of a problem is the amount by which its initial position lacks the resources of
the entire board, combined with the total resources of the final position and the costs of any
moves you intend to make. Since the resources of the entire hoard are

a*b*cafB(the (English) Gross National Product )
we have
a*btcaf
deficit
The deficit is found very easily by multiplying the initial hole values by the final peg values.
For Central Solitaire, the basic deficit is

remaining resources =

caf.cafl =,

which the Prodigal Son’s bad moves extravagantly enlarged to ¢*. He clearly didn’t know the
Deficit Rule:

If deficit/c* 1S productive,
your remaining resources AREN'T!

This is because (G.N.P.)/c? is our unproductive product a*@*c=3ag.

Accounting for Two-Peg Reversal Problems

We know that all the one-peg reversal problems are possible, but there are just four different
impossible two-peg reversal problems. The first of these is Hamlet’s Memorable Problem
(to be or not to be):

Get to only b, e present (to be)
from only b, e absent (not be).

_Q_g,&armw/orw Pratrlom

Wﬁa&@ b&e : pap
Final fugr @ 6& e : S.ag
M&M/@Wﬁmﬁra COER0C =

Junpds b

B, O n W

-+
o
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Since

=qgle?2 = A?

cd

is productive, Hamlet’s Problem succumbs to the Deficit Rule. The other three impossible
two-peg reversals are the Dodo Problems, for which the two places are two of the five dodo
pegs (Fig. 22(d)). Deficit accounts for the typical problems eo, ex and eE are:

Dodo Problem €o ex ek
Initial holes and . 4 o . e
final pegs } (af3.ba) (aB.caB)? | (af.aaf3)
Required moves ca.efd coy cone
Deficit a’b’claf3 a’cla atc?
Deficit /et A.B A AA

The reader who has been paying attention will have no difficulty in finding solutions to any
other two-peg reversal problem.

John Conway, Mike Guy and Bob Hutchings have shown that the only impossible three-peg
reversals are typified by

1. The Bumble-bee Problems (b, ¢ and any third place other than g, m, M, G),

2. The Deader Dodo Problems (two dodos and any third place other than an outside
corner acgmMGC A),

3. The Three B’ars Problems (any three of the unlucky 13 places in the three rows def,
nopxPON,FED).

These can be shown to be impossible by deficit accounting . In fact in any reversal problem,
an additional peg other than an outside corner merely aggravates the deficit.

Forgetting the Order Can Be Useful

If you allow yourself to have 2 or more, or —1 or less, pegs in a hole, you can make your moves
in any order! It’s a good idea to alter a hard problem in this way, and when you've solved the
altered problem, go back and find a sensible order for the original one.

We'll do out loud for you the tricky 3-peg reversal:

start with 0 pegsin b, N, n; 1 peg everywhere else;
end  with 1 pegin b, N, n; 0 pegs anywhere else.

In the altered problem it's easier to

start with —1 pegin b, N, n; 1 peg everywhere else;
end  with 0 pegs anywhere.
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—
—
— i i, w—

© «)

Figure 27. Solving a Tricky 3-peg Reversal Problem.

From the starting position, Fig. 27(a), we’ll need, at some time, to make three jumps to fill
those —1's, so we make these three jumps now, reaching Fig. 27(b). The only plausible way to
deal with the six isolated corner pegs in this is to jump them inwards, and after the indicated
upwards jump over the centre we reach Fig. 27(c). The remaining pegs in this can be cleared
by a 3-purge, a 6-purge and four double jumps over the inner corners.

If you follow Fig. 27(d) in the order A to L you'll find yourself making all the above moves
in a legal way. The double jumps have heen incorporated into the 3-purges B, C, I and K.




& Beasley's Exit Theorems 829

Beasley’s Exit Theorems

Sometimes you can work out exactly what moves to make in a problem, but find it hard to
get them into the right order. The following remarks can help you get your moves in order, or
prove that it can’t be done.

A region of at least three squares
that starts full or ends empty
needs at least one ezit move.

A region of at least three squares
that starts full and ends empty
needs at least two exit moves.

BEASLEY’S FIRST AND SECOND EXIT THEOREMS

An exit move for a region is a jump that empties some square in the region and fills
some square outside the region. To justify Beasley’s Second Exit Theorem, note that the first
and last moves affecting a region must both be exits. We'll illustrate with a stolid survisivor
problem.

A Stolid Survivor Problem

Suppose we want to do an a-reversal, with the added condition that peg K is the stolid
survivor, i.e. that the first move of K is also the final move from K to a. Can the grand
finale be a 6-chain?

The ideas of the first part of our discussion are often useful in long chain problems. Then
we'll try to put the moves we've found into order, using Beasley’s Exit Theorems.

How do we use the 16 side pegs h®v® of Figs. 22(h) and (v)? Each of the outer corner
pegs must at some time be jumped into the central 3 x 3 square, and those at ¢' and M must
sidestep first to avoid the stolid survivor at K. So the jumps mentioned use up side pegs as
follows:

¢c m G A C M g
v h h v hv vh h

leaving h*v* for the remaining jumps. Since the first move uses one side peg and the final
chain six, we have accounted for all the side pegs and no other move can destroy one.

This forces us to make the first move ¢,, since the alternative, i,, would move an inside
corner peg to the outside and make us use another side peg to bring it back later. Next k.
would use another side peg, so the second move is j, and this peg must stay at b until the
grand finale because a move refilling e would use yvet another side peg. We now know that the
final 6-chain uses h%v? and involves a horizontal jump over b, so it must be as in Fig. 28(a).

Since K doesn’t move till the end, L can’t be jumped over and can only be cleared by
the upward jump L. We need to make two jumps over B, once to get corner peg C out,
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Figure 28. Can the Stolid Survivor Make a Grand 6-chain Finale?
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and once in the finale, so we must deliver an extra peg there by a downward jump Jg. For
similar reasons two extra pegs are needed at D, so we must make two downward jumps Pp.
For the second of these, and for the finale, we need two more pegs delivered at P; these must
come from N and p. We've now found 23 (Fig. 28(b)) of the 31 jumps. If we make these we
arrive at Fig. 28(c). The two pegs on each of I and & must be cleared by pairs of vertical or
horizontal to and fro jumps, and the four on i by two such pairs.

To find the right order in which to make these moves we use Beasley’s Second Exit Theorem.
Consider the region of Fig. 29(a). The moves we've copied from Fig. 28(b) incorporate just
one exit from the region; the vertical jump across P. To make sure there's another we must
remove the two pegs on k by a vertical pair of to and fro jumps as in Fig. 29(b). But the
region of that figure can now have only one exit, the vertical jump across f. So our problem’s
impossible!

%

(@) ®)

Figure 29. Using Beasley’'s Second Exit Theorem.
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Another Hard Problem

-4 8

1 11 5 + 44
4 411t 11 33 3 5-3 A
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Figure 30. The Reversal Problem abceg.

We'll try the 5-peg reversal problem abeeg, i.e. start with the board full except for spaces
at a, b, ¢, e, g, and finish with pegs in just those places. An equivalent problem is to clear the
board of Fig. 30(a), which has negpegs (or negs) in each of the places a, b, ¢, e, g and pegs in
the other 28 places.

For the original problem the pagoda function of Fig. 30(b) changes from 20 to 16, or, in
the form of Fig. 30(a), from 4 to 0. This pag kills any possible move across b, which would
lose 8, so the jumps i,, k. shown in Fig. 30(c) are forced, as is the jump jj to fill b. In order to
make this last jump a peg must he delivered to ¢, and e must also be full by the end, so two
jumps z. are also needed. If we make these five jumps, using negs where needed, we arrive at

8§ 8
§ 5
~4 1 -2 f 1 -~ 3 33 353
1111 %49 —— { 11 i -
111 1
f 41

@ b ©)

Figure 31. We Make Some Progress.

Fig. 31(a), whose resources are a?b*c a3, showing a deficit of a®c?. The Deficit Rule tells us

forced. Now use the pagoda function of Fig. 31(c). Its value for Fig. 31(a) is 2, so the peg at
N can't jump inwards, nor can we jump over it upwards, since these moves lose 4 on this peg.
So the jump mg (Fig. 31(b)) is forced. The two pegs at G must now both jump to I, and a
peg must be delivered to H for the second of these. This can’t come from [, as this loses 4 on
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the 1st pag, so the jump Jy is also forced. Moreover, as [ can’t jump downwards, and can’t be
jumped over (this would lose a )it must make the jump /; over k. This needs delivery of a peg
at k, which can’t come from ¢ (loses 6 on the last pag) so the jump I, is forced. If we make
all these moves, which have been collected in Fig. 31(b), we arrive at Fig. 32(a), for which the
resources are now

a’b*ela = Ab® or A.B.b.cf or B.a.ao.bf.

so there is no jump ca.

22
22
1 -4 1
1 - 1 11 -4 2 2 2
| 1 L | 1 L 1
111 111 4
111 111

@ ®) ()

Figure 32. A Cul-de-Sac!

There are two ways in which we might remove the peg at O: by jigs or by O,. The
former (after the necessary delivery I) leads to Fig. 32(b) which is impossible to clear, as
the pag of Fig. 32(c) shows. So O, is forced (Fig. 33(a)) and this requires the delivery Dp
(horizontal delivery is prohibited by the pag of Fig. 31(c)). These two jumps lead to a position
whose resources a?a/3 are uniquely productive: (a?c~!a)(cf) and the jump E, is forced. The
L-package of Fig. 33(a) will deliver a second peg to K and the board is cleared by L; and
h IIj-

7809
£ A b {27
A B, b3
< (S O S " 4+1+,_I
b4 >} ot 6->4 4

- L |
(a) (b) ©

Figure 33. The Problem Solved.

The 23 jumps are shown in Fig. 33(b). How do we do them in practice? In what order?
The answer isn’t unique, but one possibility is given in Fig. 33(c). It involves two L-packages,
10 and 11, and two chain moves, 135 and 145.
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The Spinner

L NON _
ONONO,
LBOK

O
O
O

\

Figure 34. The Spinner.
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If you start with empty spaces at b, B and marked pegs at g, M, GG, m, can you finish with
just the four marked pegs on the hoard in the respective positions M, G, m, g7




Extras

Our Fine Finalist

The Rule of Two and the Rule of Three together tells us that if the initial hole is at B, then
a finalist that starts at J must end in either B or b. Here's a solution for b:

G

The letters indicate the order of the successive moves, except for the finalizing flourish. The
bent arrow we've used for move I is our notation for an L-package, as distinct from an L-purge.
However, it’s impossible for the finalist to finish at B. This is because there are forced
moves
J B rm rg J B

which consume

a? ca ca @

on the Balance Sheet, giving a deficit of a*c?. Since
deficit/c* = a'c™?
is productive, your remaining resources aren’t.
Doing the Splits
If you start from Fig. 16(a) and make the moves A to I indicated in Fig. 35, where the pairs
of circles €', F', (G indicate 2-purges, you'll reach a 5-peg configuration which can easily be

reduced to I, L or f. (We found this solution by the ordering process after subtracting this
5-peg configuration from the starting position.)

834
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©
B

© )
2710
® ®L&

@ fEf1

Figure 35. The Train was going to fvanicGrad, Ljubljana or foéa.

All Soluble One-Peg Problems on the Continental Board

All soluble one-peg probems on the Continental board were found by Reiss using his theory.
In our language, the Continental board is algebraically equal to its centre, and so for a one-peg
problem to be soluble we must have

(initial hole) x (final peg) = centre,

in our algebraic sense. You can easily check that the initial hole and final peg are at opposite
ends of an arrow in

(apCO)+ (APco) (eGJM) « (Egjm).

There is a 41-hole board for which Lucas gives all the soluble problems; but see the appendix
to his second edition, because he first conjectured that most of the problems were insoluble!

The Last Two Moves

The last two moves in Fig. 19(a) are ngGs,

A 20-Man Solitaire Army

A 20-man solitaire army can get a scout 4 places out by arranging itself as shown in Fig. 23.
The two men with guns can be moved to the shaded places so as to obtain the only other
arrangement.

Fool’s Solitaire, Etc.

If each of your moves is confined to the middle row or column you'll reach a position like
Fig. 36(a) after six jumps. The next pegbound position is the Hammer and Sickle position of
Fig. 36(b), reached after ten jumps.




836 Chapter 23. Purging Pegs Properly

XX
e o
e o
ole
e o

®
b

Figure 36. (a) Sickle and Sickle, (b} Hammer and Sickle.
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Figure 37. Succouring the Sucker.
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To succour the sucker who's made five of the six moves leading to Fig. 36(a) it’s best to
try to clear Fig. 37(a) to zero. If you set this up on the board (use an upside down peg for the
— 1!} you should see how the moves of Fig. 37(b) suggest themselves in order, leading to the
easily cleared position, Fig. 37(c). The L-moves in Fig. 37(b) are L-packages, not L-purges .
You then have the tricky little problem of arranging the moves in order, one solution of which
is given in Fig. 37(d), in which A and F are L-purges, but C is an L-package.

Beasley Proves Bergholt Is Best

Suppose there were a 17-move solution to Central Solitaire. Then Beasley first uses the scor-
ing function of Fig. 38(a) (“score” refers to this function—which is net a pagoda function—
throughout the proof) and his First Exit Theorem, to show that no move begins or ends on
b, n, B or N. The initial and final scores are 20 and 0. Moves which begin or end on b, n, B
or N increase the score by at least 1. Others decrease it by at most 2 (the careful reader will
make a table of score changes for each type of move).

3 3
2
3 4 f 3
2 -2
3 A1 1 3
-2
3 3

Q)

Figure 38. Scoring Function and Regions Used in Beasley’s Proof.

Any solution to Central Solitaire contains 11 reserved moves:
the first, which we'll take to be e,
the last, a single jump into the centre,
the penultimate one, taking a peg to j, p, J or P, and
eight moves bringing the outside corner pegs to inside corner
squares so they may be captured.

The first and last moves each increase the score by 2, the penultimate one decreases it by
at most 1 and each of the other eight decreases it by at most 2. So the other six (loose) moves
must decrease the score by at least 7.

The second move is a loose move, either .J; or h; say. The move J; doesn’t change the score
and it leaves the region of Fig. 38(b) full. The first exit from this region is a loose move, either
of type b; or of type (ending with) h;. The former increases the score by 2 and the other four
loose moves would have to decrease it by at least 9, which is impossible. The latter decreases
the score by 1, and our four loose moves have to reduce it further by at least 6. If any of these
increased the score, the others could not then reduce it to zero, so moves starting or ending
on b, n, B or N are again impossible. Such a move might occur as the penultimate one, but




838 Chapter 23. Purging Pegs Properly &

Figure 39. What is the First Exit?

the six loose moves would then have to reduce the score by 10, and the same argument shows
this to be impossible.

The second move h; reduces the score by 1 and is a first exit from the region of Fig. 38(b).
The other five loose moves must reduce the score by at least 6. What is the first exit from
the region of Fig. 38(c)? There are several possibilities, all of them loose moves, which we'll
leave the reader to pursue. In some cases he'll want to ask a further question about one of the
regions of Fig. 39, whichever is still full. From now on we'll assume that no move begins or
ends on b, n, B or N.

How do we clear a, b and ¢7 We've proved that b can’t jump out, so there must be a jump
over it, say ¢,. The two pegs at a now force two jumps a; and a jump into d, which we shall
call a side delivery. The four jumps

ca a; a; 4

are parts of at least three moves

aj... 7...4 Cgi... (the normal case), or

ai... 7.4 7. keai (2 U-turn).

However a U-turn demands a previous clearance of ¢ and an extra side delivery to f.

Since the same argument applies at n, B and N, we shall need at least four side deliveries,
none of which can be among our 11 reserved moves, and none of which can be the first exit
from Fig. 38(b). This accounts for 16 moves; call the other the spare. Moreover, if a U-turn
is involved we have a further side delivery, and so no spare. Note that after eha, p is a side
delivery, but j doesn't count as one while g is still occupied, because we'll still need one to
clear gnM .

The final stage of Beasley’s proof just enumerates all the variations. In the list below the
spare move is in bold. In the first two variations the first exit from Fig. 38(b) is L, and in all
the others it’s h. Each variation ends with 1, § or a colon and a number.

1 means that the next move can’t be a corner move
or a side delivery, but the spare has already been used,
§  means that there aren’t enough moves left to reduce
the score to zero, and
{9 refers to variation number 9, for example.

This list of variations covers the cases where no U-turns are used. If there is a U-turn then
is no spare move so we have only the variation ehapcai(cf. 56).
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1 eJLCpA,% 17 ehKMJg,T 33 ehajgpl§ 48  ehapFc, i
2 D 18 CD§ 34 c,L§ 49 M,i
19 P,g,i 35 J,M,} 50 c,MJg,i&
3 ehxyft 20 Ap 36 LM, 51 Mc,:50
4 pe,i 21 d.g,t 37 L 52 Jeii
5 Lap§ 22 4, 38 J M,pe,t 53 g1
6 ais 23 ia$ 39 LM pie,t 54 ¢,:50
7 kcPa,? 24 CD§ 55 g,¢,7
8 mH§ 25 PoA,7 40 ehapc:30 36 c.P,t
9 Joa,l 26 MJ:19 41 k.§ 57 CF.MJg,t
10 Gt 27 j.8 4 x4 58 x4
11 L.§ 28 d,A,% 43 L5 59 L§
12 mH§ 29 MJI21 44 kmH§ 60 JaL§
13 JG,i 45 J,G,i 61 J M5
14 cP:9 30 ehacpal 46 L.§ 62 LM,
15 1.,Gap§ 31 x3 47 Pc,t 63 P
16 § 32 L:5 64 FMj.$§
65 Jg,%

The Classical Problems

These are: start with one empty space, finish with a single peg. They include the reversals,
for which Bergholt’s results were:

a— b— d- e— i—- j— z— reversal
in 16 18 16 19 16 16 18 moves.

We've just seen that his z-reversal is best possible, but Harry 0. Davis has given a 15-move
solution of the i-reversal:

kth CPKCDPFA;;J"F:‘I-GzHg‘azd{,gg.
And here are his solutions, which equal Bergholt’s, for the b- and j-reversals:
jhapcszlp I fp AsGJImagL gy MsC Bs,
hKCdg ﬂ:{Jknl-H;gG;;CAQDFdQQa.b7.

Hermary identified the 21 distinct problems, one place empty to one place full (see Lucas)
and Davis has made a table of best known solutions (see Martin Gardner, “The Unexpected
Hanging and Other Mathematical Diversions“). The numbers of moves are:

aa ap a0 aC bbb bn br bB dd dK dH ee eM e i i jj jg jE zx zb
16 16 17 16 18 17 18 18 16 15 16 19 17 17 15 16 16 16 17 18 17

For this information we thank Wade E. Philpott, who has copies of the solutions. Omar will
want to find better ones, or prove them best possible.
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Pursuing Puzzles Purposefully

The chapter of accidents is the longest chapter in the book.
John Wilkes

I shall proceed to such Recreations as adorn the Mind;
of which those of the Mathematicks are inferior to none.

William Leybourne; Pleasure with Profit.

We know you want to use your winning ways mostly when playing with other people, but
there are quite a lot of puzzles that are so interesting that you really feel you're playing a
game against some invisible opponent—perhaps the puzzle's designer—maybe a malevolent
deity. In this chapter we’ll discuss a few cases where some kind of strategic thinking simplifies
the problem. But because we don't want to spoil your fun we'll try to arrange not always to
give the whole game away.

Soma

This elegant little puzzle was devised by Piet Hein. Figure 1 shows the seven non-convex
shapes that can be made by sticking 4 or fewer 1 x 1 x 1 cubes together. Piet Hein's puzzle is
to assemble these as a 3 x 3 x 3 cube.

1=W 2=Y 3i=G 4 =10 5=L 6=R 7=B8B
White Yellow Green Orange bLue Red Black

Figure 1. The Seven Pieces of Soma.

843
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We advise you to use seven different colors for your pieces as in the figure. Many people
solve this puzzle in under ten minutes, so it can’t be terribly hard. But we’ve got a distinct
feeling that it’s much harder than it ought to be. Is this just because the pieces have such
awkwardly wriggly shapes?

Blocks-in-a-Box

Here is another puzzle invented by one of us some vears ago, in which all the pieces are
rectangular cuboids but it still seems undeservedly hard to fit them together. We are asked
to pack one 2 x 2 x 2 cube, one 2 x 2 x 1 square, three 3 x 1 x 1 rods and thirteen 4 x 2
x 1 planks into a 5 x 5 x 5 box (Fig. 2). It’s quite easy to get all but one of the blocks into
the box, but somehow one piece always seems to stick out somewhere. A friend of ours once
spent many evenings without ever finding a solution. Why is it so much harder than it seems
to be?

S R2020000000.-

P il
Figure 2. The Eighteen Pieces for Blocks-in-a-Box.

Hidden Secrets

In our view the good puzzles are those with simple pieces but difficult solutions. Anyone can
make a hard puzzle with lots of complicated pieces but how can you possibly make a hard
puzzle out of a few easy pieces?

When a seemingly simple puzzle is unexpectedly difficult, it’s usually because, as well as
the obvious problem, there are some hidden ones to be attended to. Both Soma and Blocks-
in-a-Box have such hidden secrets, but let’s look at a much simpler puzzle, to fit six 2 x 2
x 1 squares into a 3 x 3 x 3 box, leaving three of the 1 x 1 x 1 cells empty—the holes
(Fig. 3). This now seems fairly trivial, but even so there’s a hidden secret which sometimes
makes people take more than 5 minutes over it. This hidden problem comes from the fact

@ﬁ@@@@“’n

Figure 3. A Much Simpler Puzzle.
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that the square pieces can only occupy an even number of the cells in each horizontal layer.
So since 9 is odd each horizontal layer must have a hole and there are only just enough holes
to go round. Of course these holes must also manage to meet each of the three layers in each
of two vertical directions—you can’t afford to have two holes in any layer, because some other
layers would have to go without.

So the problem wasn'’t really to fit the pieces in but rather the holes. Only when you've
realized this do you see why the unique solution (Fig. 4) has to be so awkward looking, with
the holes strung out in a line between opposite corners rather than neatly arranged at the top
of the box.

Perhaps you'd like to try the big Blocks-in-a-Box problem now, before looking at the extra
hints in the Extras.

Figure 4. Six Squares in a 3 x 3 x 3 Box.

The Hidden Secrets of Soma

It's because the Soma puzzle pieces have to satisfy some hidden constraints as well as the
obvious ones, that it causes most people more trouble than it should. Let’s see why.
The 3 x 3 x 3 cube has 8 vertez cells, 12 edge cells, 6 face cells and 1 central cell as in Fig. 5.

Figure 5. The Vertex, Edge, Face and Central (invisible) Cells.
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Now the respective pieces can occupy at most

W Y G O L R B
1, 2,2 1 1, 1, 1

of the vertex cells, so just one piece, the deficient one, must occupy just one less vertex-cell
than it might. The green piece can’t be deficient without being doubly so, and therefore:

the Green piece has
its spine along an
edge of the cube.

Now let’s color the 27 cells of the cube in two alternating colors,

Flame for the 14 FaVored cells, F and V,
Emerald for the 13 ExCeeded ones, E and C.

Then in one solution that we know, the respective pieces occupy

W Y G O L R B
2 +2 43 42 +242+1=14F,V cells,
1 +2 +1 42 +2+42+3=13E, C cells,

but the Yellow, Orange, bLue and Red pieces, and we now know also the Green piece, must
occupy these numbers in every solution, and therefore so must the White and the Black, since
an interchange of colors in either or both of these would alter the totals.

The White piece occupies
2 FV cells, 1 EC cell.

The Black piece occupies

1 FV cell and 3 EC ones.

For the placing of a single piece within the box, these considerations leave only the positions
of Fig. 6 (which all arise). You'll see that up to symmetries of the cube, the placement of any
single piece is determined by whether or not it is deficient and whether or not it occupies the
central cell.

The hidden secrets of Soma make it quite likely that one of the first few pieces you put in
may already be wrong, when of course you’ll spend a lot of time assembling more pieces before
such a mistake shows its effect. This would happen for instance if you started by putting the
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L

Figure 6. All Possible Positions for the Seven Soma Pieces.

corner of the White piece into a corner of the cube. But if you only put the pieces into the
allowed positions, you'll find a solution almost as soon as you start. The complete list of 240
Soma solutions was made by hand by J.H. Conway and M.J.T. Guy one particularly rainy
afternoon in 1961. The SOMAP in the Extras enables you to get to 239 of them, when you've
found one—and located it on the map!

Hoffman’s Arithmetico-Geometric Puzzle

A well-known mathematical theorem is the inequality between the arithmetic and geometric
means:

wﬁg“;?

Figure 7 provides a neat proof of this in the form

4ab < (a+ b)?

and the three variable version
27abe < (a4 b+ ¢)?

has prompted Dean Hoffman to enquire whether 27 a x b x ¢ blocks can always be fitted into
a cube of side a + b+ ¢. This turns out to be quite a hard puzzle if a, b, ¢ are fairly close
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h a

a b

Figure 7. Proof of the Arithmetico-Geometric Inequality.

together but not equal. A good practical problem is to fit

27 4 x 5 x 6 blocks into a 15 x 15 x 15 box.

With these choices, as for any others with
1
Zm+b+@<a<b<g

it can be shown that each vertical stack of three blocks must contain just one of each height
a, b, ¢, while there must be just three of each height in each horizontal layer. There must be
the same unused area on each face (just 3 square units in the 4 x 5 x 6 case).

It’s almost impossible to solve the puzzle if you don't keep these hidden secrets constantly in
mind because you'll make irretrievable mistakes like making a stack of three height 5 blocks, or
leaving a 2 x 2 empty hole on some face. When you de keep them in mind, the puzzle becomes
much easier, being only extremely difficult! You'll find some information about solutions to
Hoffman’s puzzle in the Extras.

Coloring Three-by-Threee-by-Three by Three, Bar Three

In Hoffman’s 3 x 3 x 3 puzzle, the three lengths along any line of three had to be different.
Can you color the cells of a 3 x 3 x 3 tic-tac-toe board with

three different colors,

using all
three colors the same

1, . .
number (9) of times, in such a way that none of the 5(5" — 3%) = 49 tic-tac-toe lines uses

three different colors,

nor has all its
three colors the same?
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Wire and String Puzzles

Figure 9 shows a number of topological puzzles which can be made with wire and string. It's
a pity that manufacturers don’t seem to know about all of these.

You wouldn’t expect to be able to say much about such varied looking objects, but in fact
there’s a quite general principle which helps you to solve a lot of them.

The Magic Mirror Method

We'll just take the one-knot version of the puzzle shown in Fig. 9(c) which has been commer-
cially sold as The Loony Loop (Trolbourne Ltd., London). You're to take the string off the
rigid wire frame in Fig. 8(a).

If only that rigid wire were a bit stretchable, the puzzle would be quite easy. After squashing
the string up (Fig. 8(b)) so as not to get in the way, we could stretch the loops over the ends
(Fig. 8(c)) and shrink them again (Fig. 8(d)). After this we can take the string right off
(Fig. 8(e)) and then put the loops back as they were (Fig. 8(f)) so as not to upset the owner.

Now the change from Fig. 8(b) to Fig. 8(d) could be accomplished by continuously dis-
torting space. Think of embedding the puzzle in a flexible jelly, if Mother has one made up.
Now old-fashioned fairgrounds had special mirrors which seemed to distort space in very funny
ways. Now let's imagine a magic mirror with the wonderful property that the distortion is
just what’s required to make Fig. 8(b) look like Fig. 8(d). Hold the wire frame absolutely still
before the magic mirror (Fig. 10(a)) and bunch the string up until it’s almost a single point on
the axis. Because the space distortion was continuous, its image will also be almost a single
point on the image axis.

Figure 8. Solving The Loony Loop.
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these

Get™
things off!

Figure 9. Shifting Rings, Strings ......




The Magic Mirror Method 851

(F)Ball and Chain

. ...and Other Things.
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Ge e

(b)
Figure 10. The Magic Mirror.

Now, very carefully, move the string in just such a way that its image in the magic mirror
moves completely away from the wire and shrinks to a small point at some little distance from
it. Once again, because the distortion was continuous, the real string must now be almost a
point, some distance from the wire, and you've solved the puzzle. Easy, wasn’t it7

In such cases it often helps to imagine an intermediate distortion. In Fig. 11 we show two
stages in an intermediately distorted one-knot Loony Loop . Perhaps you're ready for the

two knot version (Fig. 9(c))? Or the Double Treble Clef (Fig. 9(b)) (Pentangle Puzzles, Over
Wallop, Hants, U.K.)?

Figure 11. A Less Distorting Mirror.

If a puzzle has got just one completely rigid piece and a number of completely flexible
pieces then you can often use the magic mirror method to pretend that the rigid piece is also
flexible. For instance, although it may seem impossible to make the braided piece of paper in
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T

Figure 12. Can You Braid this Strip of Paper?

Fig. 12 without glue, it can be undone quite easily. This principle is quite familiar to craftsmen
in leather. (To make it you should start braiding at one end and undo the tangle which forms

at the other.)

The Barmy Braid

The Barmy Braid problem appears for the first time in this book. It's to take the string off
the rigid wire frame in Fig. 13(a). You know you can do it, because in a suitable magic mirror

it looks like Fig. 13(b).

Cr

i
I T

T

(b)

Figure 13. Barmy Braid Meets Magic Mirror.
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The Artful Arrow

Figure 8(a) is our version of a puzzle that appears in many different forms. The basic frame-
work is often a har of wood with a drill hole in place of our hexagon. We have even seen a
version in which the ends of our arrow are a giant’s arms and the central hole his nostrils,
but the solution is always the same! You can solve this puzzle, and some similar ones, by a
modification of the Magic Mirror Method which we call

The Magic Movie Method

If the Artful Arrow had a much smaller ring, there'd be no difficulty about solving it; we'd
just slide the ring along the string from the tail of the arrow to its head. Let’s suppose we
have a kinematic friend who takes a movie of this, but that through some accident with his
filters, the string doesn’t show up too well, so that what the movie shows is the rigid arrow
framework and a little ring that wanders about in space. In fact the ring moves downward

through the hexagon (1 to 2 to 3 in Fig. 14(a)), sweeps around (3 to 4 to 5) and then comes
safely back up again (5 to 6 to 7).

Figure 14(a). The Magic Movie M.
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Figure 14(b). An Intermediate Half-Magic Movie.

What we want to do is to watch this movie in a sort of hyperspace magic mirror which
distorts both space and time. Our friend can arrange this for us by taking the movie My to
the animation department where they can change the whole movie bit by bit, first to M, in
which the ring goes down through the hexagon and wanders about a bit less before it comes
back up again, then to Ms, in which it wanders hardly at all before coming up, then to Mj3 in
which it only takes a timid dip through the hexagon, then in M, not at all, while in Mj;, Mg
...the size of the ring gradually increases until it is too big to go through the hexagon.

The trouble with all these movies is that we can't see the string! But since we intend the
sequence of movies to realize a continuous distortion of space-time, we can ask the animation
department to work overtime and fill in the position of the string as well. The final movie,
M say, should satisfy the producer as representing a solution to the puzzle.

As usual, it helps if the whole process is only half-magic. What must actually happen
in this sequence of movies is that the excursion of the ring through the hexagon is gradually
replaced by a pulling up of the central loop of string (Mahomet coming to the mountain). In
Fig. 14(b) we show an intermediate movie in which you can hardly tell whether this loop, as
it passes through the ring in position 4, is above or below the hexagon. You can therefore
solve this puzzle by passing the ring from 1 to 2 to 3 while the loop is below the hexagon, then
lifting the loop a bit while you slide the ring from 3 to 4 to 5 and drop it again so that you
can go from 5 to 6 to 7. Since all these movies can be made with a full-sized ring, this will
solve the puzzle.

This argument allows us to extend the idea we noted when introducing the Barmy Braid.
Suppose that a puzzle has any number of rigid pieces (like our arrow and ring) and some arbi-
trarily flexible ones (e.g., our string) and you could find a solution if the rigid pieces were made
flexible. Then, if the motion of the rigid pieces in your solution can be continuously distorted
into a rigidly permissible motion, you can use the Magic Movie Method to solve the original
puzzle. In topologists’ technical language we are using the Isotopy Ertension Principle.
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Party Tricks and Chinese Rings

Figure 15. Girl Meets Boy.

You must have met the party trick where the boy and the girl have to separate themselves
without untying the knots in the string. Usually they have lots of fun stepping through one
another’s arms without effect before they find the real answer.

Let’s look at one of those fists more closely (Fig. 16(a)). With a really magic mirror this
looks like (Fig. 16(b)) and the solution is obvious, but as usual it’s slightly easier to see what
to do if your mirror is only half magic (Fig. 16(c)).

boy's boy’s boy’s
string string string

Figure 16. Boy Leaves Girl.
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Figure 17(a). Pajamas on Hanger.

One of our wire and string puzzles is very like this. The pajama-shaped frame at the
bottom of Fig. 17(a) is made of wire rather than string, but it happens to be just about the
shape that a piece of string would need to get to while being taken off. In Fig. 8(d) you’ll see
there’s a similar puzzle, but with an extra piece.

The magic mirror in Fig. 17(b) shows that this puzzle can certainly be solved if the wire
pajama shape is replaced by a completely flexible string—once again this funny shape is
sufficient to overcome its lack of flexibility.

Figure 17(b). Another Look in the Magic Mirror.
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The Chinese rings are an indefinite extension of this principle. The magic mirror method
shows that the string in Fig. 18(a) can be taken right off. In the course of doing so it reaches
a position like that of the wire loop in Fig. 18(b), and removal of this is the usual Chinese
Rings puzzle.

Figure 18. The Chinese (st)ring Puzzle.

Chinese Rings and the Gray Code

Figure 19(a) shows a certain position of a 7-ring Chinese Rings puzzle. We call this position
1 0 1 1 1 0 0

because the rings we've numbered
64 32 16 8 4 2 1

are respectively
on off on on on off off

the loop. (“On” means that the ring’s retaining wire passes through the loop.) Which positions
neighbor this?

You hardly need a magic mirror to see how the state of the rightmost ring, number 1, can
always be changed (Fig. 19(b)), showing that our position neighbors

1 0 1 1 1 0 1.

But it also neighbors

as well!

To see this, slip ring number 8 up over the end of the loop as suggested by the dotted arrow
in Fig. 19(a) and then drop it down through the loop as hinted in Fig. 19(c).

In general the rightmost ring, number 1, can always be slipped on or off the loop, so that

? 7 7 0 neighbors ... ? 7?7 7 1.




Chinese Rings and the Gray Code
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Figure 19. Gray Code and Chinese Rings.
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But also a ring can be slipped on or off provided that the ring just right of it is on and all
ring right of that are off, so that

71 1 0 0 0 neighbors ... 7 0 1 0 0 0.

With these neighboring rules the entire set of 2™ positions in the n-ring puzzle form one
continuous sequence, which for n = 4 is:

ring #
state # 8, i.e.

8

1 0 0 0 is15 moves from being off,
state £ 9,ie. 1 0 0 1 1is 14 moves from being off,
state ## 11,ie. 1 0 1 1 is 13 moves from being off,
state #£ 10,ie. 1 0 1 0 is 12 moves from being off,
state # 14,ie. 1 1 0 is 11 moves from being off,
state # 15, ie. 1
state # 13,ie. 1
state # 12,ie 1
state # 4,ie. 0

1

1 1 1 is10 moves from being off,
1 0 1 is9 moves from being off,
1 0 0 is8 moves from being off,
1 0 0 is7 moves from being off,
1
1
1

state #£ 5,ie. 0 0 1 is 6 moves from being off,

state # 7,ie. 0 1 1 is 5 moves from being off,

state # 6,ie. 0 1 0 is 4 moves from being off,

state £ 2,ie. 0 0 1 0 1is 3 moves from being off,

state ## 3,ie. 0 0 1 1 is2 moves from being off,

gtate # 1,ie. 0 0 0 1 is1 moves from being off,
and state # 0,ie. 0 0 0 0 is OFF!

How do we tell how many moves it takes to get all the rings off if we're given only the
state number, i.e. the sum of the numbers of the rings that are on? The answer displays a
remarkable connexion with nim-addition! When you're in state number n, it will take you
exactly

nit [n/2] ¥ [n/4] ¥ [n/8] Fo.=m

moves to get off. For example in state 13 you're just

13561351=9

moves away. And if you're given a number m, then state number

mi lm/2] =n

is the one that's just m moves from off. For example

9%4=13.
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Let’s find the position that’s 99 moves from off in the 7-ring puzzle. Because the binary
expansions of 99 and |99/2] are

1 1 0 0 0 1 1
and 1 1 0 0 0 1
the answeris 1 0 1 0 0 1 0.

How many moves is state
1 1 0 1 1 1 1

1 1 0 1 1 1
1 1 0 1 1
1 1 0 1

1 1 0

—
—

b B e = e e e

o

= 1 0 0 1 0 1

which is the binary expansion of 74.

In various kinds of control device it’s important to code numbers in such a way that
the codes from adjacent numbers differ in only one place and the code that appears ahove,
known to engineers as the Gray code, has this useful property. It has also been used in
transmitting television signals. However, its connexion with the Chinese Rings puzzle was
known to Monsieur L. Gros, more than a century ago. Incidentally, the multiknot Loony Loop
is connected with a ternary version of the Gray code.

The Chinese Rings have occasionally been used as a sort of combination lock. In recent
years several mechanical and electronic puzzles, completely different in appearance, but em-
ploying the same mathematical structure, have appeared on the market.

The Tower of Hanoi

In happier times, Hanoi was mainly known to puzzlers as the fabled site of that temple where
monks were ceaselessly engaged in transferring 64 gold discs from the first to the last of three
pegs according to the conditions that

only one disc may be moved at a time, and
no disc may be placed above a smaller one.

Figure 20(a) shows the initial position in a smaller version of the puzzle and Fig. 20(b)
shows the position 13 moves later.

In this puzzle it’s possible to make mistakes, unlike in the Chinese Rings where the only
mistake you can make is to start travelling in the wrong direction. However, you won't make
too many mistakes if you use discs that are alternately gold and silver and
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L e

Figure 20. The Tower of Hanoi.

never place a disc immediately
above another of the same metal.

To find out where you should be after m moves, expand m in binary, and then, according
as the total number of discs is

even or odd,
replace a 1 digit by the ternary number 1 or 2,
replace a 2 digit by the ternary number 21 or 12,
replace a 4 digit by the ternary number 122 or 211,
replace an 8 digit by the ternary number 2111 or 1222,

replace a 16 digit by the ternary number 12222 or 21111,
replace a 32 digit by the ternary number 211111 or 122222,
replace a 64 digit by the ternary number 1222222 or 2111111,

These ternary numbers, when added mod 3 without carrying, show you what peg each disc
should be on. For 13 moves and a 7-disc tower, since 7 is odd and

1 2
+4 we find the ternary numbers 211
+8 1222
=13 0001102,

showing that disc 1 should be on peg 2, discs 4 and 8 on peg 1, and the rest on peg 0 as in
Fig. 20(b).

The Tower of Hanoi puzzle and the fable which usually accompanies it were invented by
Messieurs Claus {Edouard Lucas) and De Parville in 1883 and 1884.
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Figure 21. A Solitaire-Like Puzzle.

A Solitaire-Like Puzzle and Some Coin-Sliding Problems

A little puzzle we came across recently is played in a way very similar to the game of Peg
Solitaire, except that the pegs are not removed after jumping. Starting from the position
of Fig. 21(a), go to the “opposite position of Fig. 21(b) jumping only in the N-S and W-E
directions. The three special pegs are to move to the three special places.

H

H

H

T

T|T

Figure 22. Swap the Hares and Tortoises.

This is rather like various two-dimensional forms of the familiar Hares and Tortoises (or

sheep and goats) puzzle (Fig. 22) in which the animals (you can use coins) have to change
places and the permitted moves are as in the game of Toads and Frogs in Chapter 1. Other
problems with the same coins are:

1. get from Fig. 23(a) to Fig. 23(b) with just 3 moves of 2 contiguous coins (the coins to
be slid on the table, remaining in the same orientation and touching throughout);

2. the same, but reversing the orientation of each pair of coins as it is moved;

3. similar problems, but with more coins;

4. form the six coins of Fig. 24(a) into a ring (Fig. 24(b)) with just three moves. At each
move one coin must be slid on the table, without disturbing any of the others, and
positioned by touching it against just two coins. For example, you might try Fig. 24(c)
for your first move, but then you wouldn’t be able to slide the middle one out.
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Figure 23. Make Three Moves of Two Contiguous Coins.
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Figure 24. Ringing the Changes.

The Fifteen Puzzle and the Lucky Seven Puzzle

7. _
Zﬁ/ﬁﬁ§i§§7
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Figure 25. Sam Loyd’s Fifteen Puzzle.

The most famous sliding puzzle is Sam Loyd’s Fifteen Puzzle in which the home position is
Fig. 25 and the move is to slide one square at a time into the empty space. You are required
to get home from the random position you usually find the puzzle in. Nowadays the puzzle is
usually sold with pieces so designed that it is impossible to remove them from the base.

Figure 26. The Lucky Seven Puzzle.
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A more interesting puzzle is the Lucky Seven Puzzle, for which the home state is dis-
played in Fig. 26 and similar rules apply.

In such puzzles there are certain basic permutations of the pieces that bring the empty
space back to its standard position. For the Seven Puzzle you can either move the four dises
in the left pentagon in the order 1, 2, 3, 4, 1, leading to the position of Fig. 27(a) or treat the
right pentagon similarly, moving 7, 6, 5, 4, 7, leading to the position of Fig. 27(b).

Figure 27. After a Few Moves.

In the first case we have effected the permutation « in which

dise 1 2 3 4 5 6 7 or, for short,
goestoplace 4 1 2 3 5 6 7

3 (1432) (5) (6) (7),
and in the second case the permutation /3 in which

disc 1 2 3 4 5 6

goestoplace 1 2 3 5 6 7T }or (1) (2) (3) (4567).

|

We can obviously combine these basic permutations to any extent. For instance, by performing
the sequence

(a4 o

1 34 25 835 35 S
2 »1 =1 =4 > 3 > 3
3 » 2 =2 =1 + 4 =5
4 +3 =3 =2 » 1 y 1
5} +0 =6 =06 > 6 > 7
6 +6 =7 =7 =7 > 4
7 +7 =4 =3 » 2 y 2
disc 1 2 3 4 5 6 7 - or
goestoplace 6 3 5 1 7 4 2 }or (164) (2357).
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Figure 28. Crossing Bridges.

By combining any given permutations in all possible ways we get what mathematicians call a
group of permutations. Is there an easy way to see which permutations belong to the group of
the Lucky Seven Puzzle? Yes! The trick, as always in such cases, is to find some permutations
which keep most of the objects fixed. In the case of the Seven Puzzle it seems best to regard
the outer edges as forming a complete circle across which there is a single bridge between
places 0 and 4 (Fig. 28). In this form the seven discs can be freely cycled round the outer
circle (which we hardly count as a move) or else a single disc may be slid across the bridge
(remember that in the actual form of the puzzle the bridge is too short for several discs to
traverse it at once). It doesn’t really matter whether the disc we slide across the bridge goes
upwards or downwards, since this has the same effect on the cyclic order, so we'll always slide
our discs downward.

Figure 29. Swapping Two and Four.

If we think of the puzzle in this way and, starting from the home position, slide discs 2,
4,2, 4, 2 down the bridge, we reach the position of Fig. 29 in which discs 2 and 4 have been
interchanged and all the others are in their original places. Obviously we can interchange any
pair of discs which are two places apart round the circle in this way. It's not hard to see how
any desired rearrangement can be reached by a succession of such interchanges. For instance
if we wanted to get

dise 1 2 3

-

toplace 7 6 5

5 6 7

4
4 3 2 1
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we might perform the interchanges of the following scheme

1 2 3 4 5 6 7
321 4 5 6 7 Get 1 ion f
et ]l 1n 1t1on lirst,
325 41 6 7 pos
32 5 4 7 6 12
3 4 5 2 7 6 |rthen?2,
34 5 6 7 2 1
5 4 3 6 7 2 1rthen3,
5 4 7 6 3 2 1
}lhen 4,
56 7 4 3 2 1
}1hen 5(6and 7).
7 6 54 3 2 1

leading to a solution in which 45 discs have crossed the bridge. This method is not very
efficient but it has the great advantage of providing an almost mechanical technique by which
you can obtain any position. Can you find a shorter solution to the above problem?

All Other Courses for Point-to-Point

The history of the Fifteen Puzzle has been given too many times to bear further repetition
here. Exactly half of the

I =1x2x3x...x15=1307674368000

permutations (the so called even permutations) can be obtained. In technical language, the
available permutations form the alternating group, A;5, whereas for the Lucky Seven Puzzle
we have the full symmetric group, S7, of 7! = 7x 6 x5 x4 x 3 x 2 x 1 = 5040 permutations.

You can make a puzzle of this type by putting counters on all but one of the nodes of
any connected graph and then sliding them, point to point, always along an edge into the
currently empty node. We can afford to ignore the degenerate cases, when your graph is a
cycle, or is made by putting two smaller graphs together at a single node, because then the
puzzle is trivial, or degenerates into the two smaller puzzles corresponding to the two smaller
graphs.

Rick Wilson has proved the remarkable theorem that for every non-degenerate case but
one we get either the full symmetric group (if some circuit is odd) or the alternating group
(otherwise). The single exception is the graph of the Tricky Six Puzzle (Fig. 30) for which
the group consists of all possible Mobius transformations

ar + b
__}
cx +d

(mod 5)
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Figure 30. Rick’s Tricky Six Puzzle.

Rubik’s Hungarian Cube — Biivos Kocka

The Hungarian words actually mean “magic cube®. If you're crazy enough to get one of these
you'll see that when it comes to you from the manufacturer it has just one color on each face
(Fig. 31(a)) but your Hungarian cube is unlikely to stay in this beautiful state because you
can rotate the nine little cubelets that make up any face (Fig. 31(b)) and so disturb the color
scheme. For example, if you complete the turn started in Fig. 31(b), and then turn the top
face clockwise you'll arrive at Fig. 31(c). After three more turns the colors are all over the
place (Fig. 31(d)) and you'll find it very hard to recover the original arrangement; in other
words to get each of the cubelets back into its own cubicle, and the right way round.

Figure 31. The Hungarian Magic Cube.

There are really two problems about this elegant little puzzle. The first is how its brilliant
designer, Ern6é Rubik, can possibly have managed to make all those motions feasible without
all the cubelets falling apart. We’ll leave that one to you! The other is, of course, to provide a
method by which we can guarantee to get home from any position our friends have muddled

the cube into.
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Just How Chaotic Can the Cube Get?

At least there are six permanent landmarks: the cubelets at the centres of the faces always
stay in their own cubicles although they may be rotated. We call these the face cubelets and
have framed them in Fig. 31 (a). No matter how confused your cube looks, you can tell what
the final color of each face should be, just by looking at the face cubelet at its centre. So, for
instance, in Fig. 31 (d) we call the top face white even though only one third of it really is.

So you can work out the home cubicle for any cubelet by just looking at its colors and
thinking which faces these belong to. For instance the LWO cubelet # in Fig. 31(d) should end
up at T (in our cube the colors opposite R, W, O are L, B, Y). We recommend the nervous
novice always to hold the cube with its white face uppermost and then to take a careful note
of the color of the bottom face, which we call the ground color.

Since the other 20 visible cubes are of two types,

8 corner cubes, which have 3 possible orientations in their cubicles,
and 12 edge cubes, which have 2,

there are at most
3% % 212 % 81 x 12! = 519024039 293 878 272000

conceivable arrangements. However, Anne Scott proved that only one-twelfth of this number,
namely
43252003 274 489 856 000

are attainable.

Chief Colors and Chief Faces

These notions help us keep track of the orientations of cubelets, even when they're not in their
home cubicles. We'll call the chief face of a cubicle the one in the top or bottom surface of
the cube, if there is one, and otherwise the one in the right or left wall. The chief color of
a cubelet is the color that should be in the chief place when the cubelet gets home. In other
words White or the Ground color if possible, and otherwise the color that should end up in
the left or right wall of the cube.

If a cubelet, no matter where it is, has its chief color in the chief face of its current cubicle
we'll call it sane and otherwise flipped (if it’s an edge cubelet) or twisted (if it’s a corner
one). There's only one way to make an edge-flip (e), but a corner may be twisted anticlockwise
(a) or clockwise (c).

Now, as shown in Fig. 32, turning the top (or bottom) preserves the chiefness of every
cubelet. Turning the front (or back) changes the chiefness at four corners and turning the left
(or right) changes it at four corners and four edges. Since each turn flips an even number of
edges, you can see that for attainable positions

the total number of edge-flips
will always be even.
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Figure 32. Changes in Chiefness.

And since each turn produces equal numbers of clockwise and anticlockwise twists

the total corner twisting
will always be zero, mod 3.

In computing corner twists we count +1 for clockwise and —1 for anticlockwise — of course
three clockwise twists of a cubelet produce no effect. Finally, for reasons as in the Fifteen
Puzzle

the total permutation of all the
20 movable cubelets must be even.

An even permutation is one we might imagine making by an even number of interchanges.

f

D

s
)

~7
(a) (b) (c)
Figure 33. The Six Stages and Our Notation for the Moves.
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Curing the Cube

Benson, Conway and Seal have simplified Anne Scott’s proof that you really can get home
from any position for which

(i) the total edge flipping is zero, mod 2,
(ii) the total corner twisting is zero, mod 3, and
(iii) the total permutation of all 20 movable cubes is even.

We have adapted our names for the moves (Fig. 33) so as to agree with David Singmaster’s in
the hope that a single notation will rapidly become universal. Note that the unprimed letters
L,R.F,B,U,D, refer to clockwise turns, and the primed letters L' .R’,F'.B',U’.D’ to anticlockwise
ones. Our notation for the slice moves is illustrated in Fig. 34. Note that in these moves
only the middle layer of the cube is turned. We shall also use the common notation in which,
for example, X2 means “do X twice” and X! means “undo X”.

o\

Figure 34. Slice Moves.

Our method has six stages which correspond roughly to the letters in Fig. 33(a).

A: Aloft, Around (Adjust) and About. D: Domiciling the Top Edge Cubelets.
B: Bottom Layer Corner Cubelets. E: Exchanging Pairs of Top Corners.
C: Central Layer Edge Cubelets. F: Finishing Flips and Fiddles.

We've collected the figures for these stages in Fig. 35 for easy reference, so keep a finger on
page 871.

Warning: Be very careful when applying this algorithm. Think of “tightening” or “loosening”
a screw-cap, so that you never mistake a clockwise turn for an anticlockwise one, even from
behind. Be aware at all times which way up you are holding the cube, and don't stop to
think in the middle of a sequence of moves. Remember that if you make a tiny mistake you'll
probably have to go all the way back to Stage A.

THE CUBE SELDOM FORGIVES!
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A: Aloft, Around (Adjust) and About

Our first stage (Fig. 35A) gets the bottom edge cubelets (A in Fig. 33(a)) into their correct
cubicles, the right way round. You bring the ground ( = chief) color of such a cubelet into the
topmost surface (Aloft) then turn the top layer Around to put this cubelet into the correct
side wall which can be turned About to home the cubelet. Sometimes this disturbs a bottom
edge cubelet that’s already home, but this can be Adjusted by turning the appropriate side
wall just before the About step.

B: Bottom Layer Corner Cubelets

Now, without disturbing the bottom layer edge cubelets, you must get the hottom layer corner
cubelets home.

If the cubelet that's to stand on the shaded square of Fig. 35B is in the top layer, turn the
top layer until this cubelet’s ground color is in one of the three numbered positions. Then do
the appropriate one of

B1:F'UF B2:RUR’ B3:FUF.RU?R’

If the cubelet is already in the bottom layer, but wrongly placed, use one of these to put any
corner cubelet from the top layer into its current position, thereby evicting it into the top
layer. Then work as above to put it into the proper place. Repeat this procedure for the other
three bottom layer corner cubelets.

C: Central Layer Edge Cubelets

This stage corrects the central layer edge cubelets without affecting the bottom layer.

If the cubelet destined for the shaded cubicle of Fig. 35C is in the top layer, turn the top
layer until you want to move this cubelet in one of the two ways of Fig. 35C (its side face will
then be just above the face cubelet of the same color). Then do the appropriate one of

Cl: URU'R"U'F'UF C2:UFUF.URUR

If the cubelet is already in the central layer, but wrongly placed, use one of these to eviet it
into the top layer. Then work as above. Repeat the procedure for the other three central layer
edge cubelets.

D: Domiciling the Top Edge Cubelets

i.e. putting the top layer edge cubelets into their own home cubicles without as yet worrying
about their orientations.

You can do this by a sequence of swaps of adjacent edge cubelets as in Fig. 35D for which
the moves are

UF.RUR'U"F

Of course you can first turn the top layer to reduce the number of swaps needed.




D: Domiciling the Top Edge Cubelets
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Bt: FUF

R RUR CtURURUFUF C2:UFUF.URUR
B3:FUFRUK

w4
o , : =M
D:UFRURUF  EFDFDYDF-M,  F3: @RY =M,

Figure 35. Six Simple Stages Cure Chaotic Cubes.
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E: Exchanging Pairs of Top Corners

Now you must get the top layer corner cubelets into their own cubicles by moves that, when
they are finally completed, won’t have affected the bottom two layers or moved the top layer
edge cubelets. Usually you can do this in just two swaps of adjacent corners, but sometimes
four will be needed.

Correct performance requires some care. Work out a pair of successive swaps of adjacent
corner cubelets that will improve things. Then turn the cube until the first required swap is

as in Fig. 35E and do our
monoswap, M, = FD.FZD?F2.D'F’

Then turn THE TOP LAYER ONLY to bring the second desired swap into the position of
Fig. 35E, do another monoswap, and then return the top layer to its original position.

Since the bottom two layers are disordered by a single monoswap, but restored by a second
one, it's important not to move these layers (by turning the cube, say) between the two
mono-swaps of each pair.

F: Finishing Flips and Fiddles

Since every cubelet should now be in its own cubicle, the only remaining problems can be
solved by edge-flips and corner twists in the top layer. To tackle any particular top layer
cubelet, turn THE TOP LAYER ONLY to bring that cubelet into one of the two shaded
cubicles of Fig. 35F and then, according as its white face is in position

1, 2 or 3
do our
anticlockwise monotwist, clockwise monotwist or edge monoflip

M, = (F'RFR/)? M, = (RF'R'F)? M. = (¢R)*

where £ is a slice move (Fig. 34).

Once again it's important not to move the bottom two layers by turning the cube between
operations, since individual monotwists and monoflips affect these layers. However, the entire
set of operations needed to correct the top layer will automatically correct the bottom two
layers as well.

Explanations

Stage E works because our monoswap operation Mg leaves the top layer unchanged except for
the desired swap of the two near corner cubelets, while two copies of the monoswap cancel
(Mg =1).
So a sequence such as
monoswap, turn top clockwise, monoswap, turn top back

doesn't really disturb the bottom two layers, which “feel” only the two cancelling monoswaps.
The top layer, however, effectively undergoes a swap of the two near corners followed by a
swap of two right corners, which are brought into position by the first top turn and returned
by the second.
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Stage F works similarly because Mg, M¢e and Me have exactly the desired effects on the
top layer, and enjoy the properties

M2 =M. =1, McMe=MeMe, May=M;"

So Anne Scott’s laws ensure that the bottom two layers feel a cancelling combination of opera-
tions, while the top layer undergoes the desired flips and twists.

Improvements

Our method is easy to explain, perform and remember, but usually takes more moves than an
expert would. If you're prepared to take more trouble and have a rather larger memory, you
can often shorten it considerably. For instance, the original monoflips and monotwists (due to
David Seal and David Goto) are shorter:

m, = ReR%z%2R m; ! = R'w?’R*wR’ m. = R'DRFDF’ m, =m_ ' = FD'F'R'D'R

but with these you must always be careful to follow a mono-operation by the corresponding
inverse one.

Explore the effects of the following moves, which many people have found useful. The first
few only affect the top layer. Here and elsewhere we've credited moves to those who first told
them to us. We expect that many facts about the cube were found by clever Hungarians long
before we learnt of them. For the Greek letter slice moves, see Fig. 34.

David Benson’s “special” RUR2. FRF2. UFU?

David Singmaster’s “Sigma” FURU'R'F’

Margaret Bumby's top edge-tricycle SU*!a. U2.5U* !

Two more top edge-tricycles U2F.aU3.U%2.aUZ.FU?;, FUF'UFU?F'U?
Top corner tricycle RU‘L’'UR'U'LU

Clive Bach’s cross-swap (a?U2a2U)?

Kati Fried’s edge-tricycle SF2aF?

Tamas Varga’s corner tricycle ((FR'F'R)3U?)?

Two double edge-swaps (RZU2)?: ((a2U?2)2

Andrew Taylor’s Stage C moves F?(RF)?(R'F’)?; (FR)?*(F'R’)?F?
Other Stage C moves FUFUF. U'F'U'F'U’; R'U'R'U'R’. URURU

In the Extras you'll find lists of the shortest known words (improvements welcome!) to
achieve any rearrangement, or any reorientation of the top layer. These are quoted from an
algorithm due to Benson, Conway and Seal which guarantees to cure the cube in at most 85
moves (a half turn still counts as one move, but a slice counts as two). Morwen Thistlethwaite
has recently constructed an impressive algorithm which never takes more than 52 moves.

Because there are 18 choices for the first move, but only 15 (non-cancelling) choices for
subsequent ones, the number of positions after 16 moves is at most

18 x 15 = 7882090 026 855 468 750 < 43 252 003 274 489 856 000

proving that there are many positions that need 17 or more moves to cure. We can improve
this to 18 moves by using the estimates u; = 18, up = 27+ 12u; = 243, upyo < 18u, +12u,,
which take into account relations like LR = RL.
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Elena’s Elements

Elena Conway likes making her cube into pretty patterns. Here are some ways she does this:

“4 Windows”™  “6 Windows” “Chequers” “Harlequin®
ay?p6? ay 30 a?yle? ayBay?e?
“Stripey” “Zigzag” “4 Crosses” “6 Crosses”

(L2F2R2)2LR’  (LRFB)*  (LRFB)*(FBLR)? or (v2L'4?R)® (12L'42R)*(e2B'a F)3

And try following “6 Crosses” with any of the earlier ones.

Are You Partial to Partial Puzzles?

It’s interesting to see what you can do using only some of the available moves. You might
restrict yourself to just a specified selection effaces, to half-turns, to slice moves, or to the
helislice moves like LR. Mathematically these correspond to subgroups we call the 2-, 3-,
4- and 5-face groups, the square group, the slice group and the helislice group.

Beginners are recommended to stay in the slice group because they cannot get lost. From
any position you can cure the edge-cubes in 3 slices, getting to “4 Windows” or “6 Windows”
and so home in 4 more slices. Frank O’Hara has shown that in fact at most 5 slices are needed
in all. The slice group has order 4%.4!/2 = 768 and the helislice group has order 2'1.3 = 6144.

The 2-face group has been intensively studied by Morwen Thistlethwaite. It’s interesting
to notice that it involves both the lucky Seven Puzzle (on the edge cubelets that move) and
Rick Wilson’s Tricky Six Puzzle (on the corners).

Roger Penrose first proved that everything can be done using just 5 faces. David Benson
has a simple proof:

RL'F?2B2RL/.U.RL'F2B2RL' = D.

Other ““Hungarian™ Objects

A2 x2x2cubeand 2 x 3 x 3 “domino“ have also been manufactured. Their design seems
even more mysterious, although as puzzles they’re much easier. One can imagine Hungarian
tetrahedra, octahedra, dodecahedra, icosahedra, ete. Although, as far as we know, these have
not all been manufactured nor completely solved, Andrew Taylor has found a neat proof that
(for any choice of chief faces and colors)

the total permutation on edges and corners is even,
the number of edge-flips is even, and
the total corner twisting is zero, modulo the corner valence.

Despondent Domino dabblers should need but three little words (with effects):
X = EhEhEh Y = EcEhNcE Z =cYcYce
(28) (13)(26)(1'3")(2'6") (13)(26)

1 1
(c is a clockwise Z—turn of the top; h,E.N E—turns of top, East, North).
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A Trio of Sliding Block Puzzles

Figure 36. Dad’s Puzzler.

Dad’s Puzzler (Fig. 36) is unfortunately almost the only sliding block puzzle that’s
generally available from toy stores, although it goes under many different names. The problem
is to slide the pieces without lifting any out of the tray, until the 2 x 2 square arrives in the lower
left hand corner. Fifty years ago the puzzle represented Dad’s furniture-removing difficulties,
and the 2 x 2 block was the piano; at other times it has heen depicted as a pennant, a car, a
mountain, or space capsule but the puzzle has remained unchanged, probably for a hundred
years. Some more enterprising manufacturer should sell a set containing one 2 x 2, four 1 x
1 and six 2 x 1 pieces which can be used either for Dad’s Puzzler or for the following more
interesting puzzles.

In the Donkey puzzle the initial arrangement is as in Fig. 37(a) and the problem is to
move the 2 x 2 square to the middle of the bottom row. The name arises from the picture
of a red donkey which adorned the 2 x 2 square in the original French version (L’ﬁmc Rouge,
which probably goes back to the last century) but we think that our choice of starting position
already looks quite like a donkey’s face.

|

Sy

s LT y.ra

(a) (b)
Figure 37. The Donkey and The Century (and a Half).
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The Century Puzzle, published for the first time in Winning Ways, was discovered by
one of us several years ago as a result of a systematic search for the hardest puzzle of this size.
Start from Fig. 37(b) and, as in the Donkey, end with the 2 x 2 block in the middle of the
bottom row. Or, if you're a real expert, you might try the Century-and-a-Half Puzzle in
which you're to end in the position got by turning Fig. 37(b) upside-down.

Tactics for Solving Such Puzzles

As in our previous sliding puzzles the basic idea is to see what can be done while quite a lot
of the pieces are kept fixed. In all three of these examples one occasionally sees one of the
configurations of Fig. 38 somewhere, and any of these can be exchanged for any other, moving
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Figure 38. A Micropuzzle.

only the pieces in the area shown. They form a kind of micro-puzzle within the larger one.
Figure 40 is a complete “map” of Dad’s Puzzler showing how it consists of a dozen of these
micro-puzzles joined by various paths of moves that are more or less forced. Using this map,
you'll find it easy to get from anywhere to anywhere else,
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Figure 39. Micro- and Mini-puzzles Found in Donkey and Century.
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Figure 40. Map of Dad’s Puzzler.
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Figure 41. Map of the Donkey.
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In the Donkey and Century puzzles there are several micro- and mini-puzzles: see what
moves you can make inside the regions shown in Fig. 40. The Century and Donkey puzzles
will never become easy but it will help if you become an adept at these minipuzzles. Figure
41 is our map of the Donkey. The positions are classified according to the location of the 2 x
2 square and in most cases we have only drawn one of a left-right mirror-image pair. Some
unimportant culs-de-sac will be found in the directions indicated by the signs |, and the
rectangle containing (7) represents many positions connected to the left and right shoulders.
The arrows indicate other connexions to the shoulders. Left-right symmetric positions are
boldly bordered.

The Century puzzle is very much larger, and we need more abbreviations to draw its map
within a reasonable compass. The positions are hest classified by the position of the large
square together with information about which of the two horizontal pieces should be counted
as “above” or “below” the square. We remark that in Fig. 42 both horizontal pieces should
be counted as below the square despite their appearance, because the only way to move these
pieces takes the horizontals dewn and the square up.

3}““&\\

ANARRN RSN

AT NNy

Y Y

Figure 42. The Two Horizontal Pieces are Below the Square!

The key to the puzzle is to find one of the two possible narrow bridges in the map at
which the first horizontal piece changes from below the square to above it. In fact it’s best
to think out the possible configurations in which this can happen and then work the puzzle
backwards and forwards from one of these. Very few people have ever solved the puzzle by
starting at the initial configuration and moving steadily towards its end. A much abbreviated
map appears as Fig. 43.

Our maps were prepared with much help from some computer calculations made by David
Fremlin at the University of Essex, who found incidentally that the Donkey pieces may be
placed in the tray in 65880 positions and the Century pieces in 109260 ways. Although the
Century puzzle can be inverted (this is our Century-and-a-Half problem) Fremlin’s computer
found that the Donkey cannot. It would be nice to have a more perspicuous proof of this.
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Counting Your Moves

It’s customary to follow Martin Gardner and declare that any kind of motion involving just
one piece counts as a single move. It takes 58 moves to solve Dad’s Puzzler and 83 to solve
the Donkey. How many do you need to solve the Century puzzle? And how many for the
Century-and-a-Half?

Paradoxical Pennies

You tell me your favorite sequence of three Heads or Tails and then I'll tell you mine. We
then spin a penny until the first time either of our sequences appears as the result of three

consecutive throws. I bet you 2 to 1 it's mine!
The graph

HHH THT

THH —=— TTH

HHT THTT

HTH TTT

shows the sequence I'll choose for each possible sequence of yours, together with the odds that
I win. You'll see that it's always at least 2 to 1 in my favor.

Here’s a rule for computing the odds. Given two Head-Tail sequences a and b of the same
length, n, we compute the leading number, aLb, by scoring 2~1 for every positive k for
which the last k letters of @ coincide with the first k& of b. Then we can show that the odds,
that b beats a in Paradoxical Pennies, are exactly

aLa — alb to bLb — bLa.

Leo Guibas and Andy Odlyzko have proved that, given a, the best choice for b is one of the
two sequences obtained by dropping the last digit of a and prefixing a new first digit. Notice
the paradoxical fact that in the length 3 game:

THH beats HHT heats HTT beats TTH beats THH.
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Paradoxical Dice

You can make three dice , A, B, C, with a similar paradoxical property, using the magic square:

L [D[E]F]
A6 [1]8
B 753
Cl 294

Each die has the numbers of one row of the square on its faces (opposite faces bearing the
same number). For these dice

A beats B heats C beats A,

all by 5 to 4 odds! Similarly for the three dice, D, E, F, obtained from the columns. The only
other paradoxical triples of dice using the same numbers are those obtained from A, B, C by
interchanging 3 with 4 and/or 6 with 7. These interchanges improve the odds.

It’s possible to put positive integers on the faces of two dice in a unique non-standard way
that gives the same probability for each total as the standard one. Algebraically, the problem
reduces to factorizing

10

22 + 22% + 32t + 42® + 5% + 627 + bx® + 42° 4 3219 221 4 212

into the form f(z)g(x) with f(0) = g(0) = 0 and f(1) = g(1) = 6. The two factorizations are

(z4+2°+2° +2* +2° +2°° and
(x+22% 4+ 22° + 2¥)(z + 2% + 2 + 2° + 2% 4 2P),

so the new pair of dice have the numbers

1,2,2,3,3,4  and 1,3,4.5.6,8.

More on Magic Squares

It’s an old puzzle to arrange the numbers from 1 to n? in an array so that all the rows and
columns and both the diagonals have the same sum, which turns out to be 1/2n(n? + 1).
The only 3 x 3 magic square (see the last section), often called the Lo-Shu , was discovered
several dynasties ago by the Chinese. We also used it in Chapter 22. In 1693 Frenicle de Bessy
had worked out the 880 magic squares of order 4. In this section we'll show you how to find
all these.

It’s handy to subtract 1 from all the numbers, because the numbers 0 to 15 are closed
under nim-addition. With this convention the magic sum is 30. We shall call a square perfect
if we can nim-add any number from 0 to 15 to its entries and still obtain a magic square; if
only 1/2 of these additions are possible we'll call it 1/2-perfect, and so on. Since nim-adding
15 is the same as complementing in 15, it always preserves the magic property, showing that
every square is at least 1/8-perfect. We shall also classify the squares by the disposition of
complementary pairs as in Fig. 44.
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Figure 44. Classifying Squares by Complementing Pairs.

There are essentially just three ways to write the numbers from 0 to 15 as an addition

table:

12

2 3 0
6 7 2
10 11 8
14 15 10

1
3
9
11

1
6
12
14

31 0 2
7 1
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but you can then freely permute the rows and columns in any of these. Take any table obtained
in this way, say

15 11 14 10
13 9 12 B8
7 3 6 2
) 1 4 0

Apply the interchanges indicated by our Quaquaversal Quadrimagifier

and you get the magic square on the left in:
5 2 1 12 6 3 2 13

4 9 10 7 5 10 11 8

8 5 6 11 9

3 14 13 0 4 |15 14| 1

Adding I to this particular example we obtain the right hand square which features in Albrecht
Diirer’s famous self-portrait, Melencolia I, in which the boxed figures indicate the date of the
work. In this case complementary numbers appear according to the scheme called CD in
Fig. 44, and so this square is called Central Diagonal.

By applying the Quaquaversal Quadrimagifier to the other forms of addition table we can
get 432 essentially different perfect magic squares. The complementary pairs enable us to
classify these as:

48 Adjacent Diagonal (AD),

48 Broken Diagonal (BD),

48 Central Diagonal (CD),

96 Adjacent Horizontal (AH) or Adjacent Vertical (AV),
96 Broken Horizontal (BH) or Broken Vertical (BV), and
96 Central Horizontal (CH) or Central Vertical (CV).
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Because we don’t count squares as different when they are related merely by a reflexion or a
rotation of the diagram, we must regard Adjacent-Horizontal and Adjacent-Vertical squares
as the same type. You can find out what type vour square will be by looking at the position
occupied by the complement of the addition table’s leading entry before Quadrimagification:

X O O O
O AD CH BV
(3 CV BD AH
(O BH AV CD

Now take the above 96 Central-Horizontal squares and apply the flip operation

0O 0 0 O
00 0O
500
00 0 O

and you'll get 96 more Central-Horizontal squares. All squares so far found are perfect.
There are 112 more Central-Horizontal squares that are only 1/4 -or 1/8-perfect. They can
be found by taking any of the seven squares:

6 10 5 9 14 2 13 1 16 t 14 5
13 12 3 2 a 5 4 11 10 oo 138 7 2
0 7 8 15 8 15 0 7 0 13 2 15 4 15 0 11
11 1 14 4 3.9 6 12 8 7 4 3 6 9 12
\d ld 14 3 12 1 | e
12 5 10 3 13 4 11 2 5 6 9 10 12 11 4 3
11 9 6 4 a 10 8 7 5 T 8 7 14
0141159115014 2 5 10 13
7 2 13 % 6 3 12 9 15 6 9 0,
i—pe;i'ect T %—;rfect

and applying any combination of the four operations:
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Now take the 14 squares of Fig. 45 and apply any combination of complementation and
the last three of our operations and you’ll get a total of 224 squares, 56 of each of the types

Adjacent Central (AC),
Broken Central (BC),

Central Adjacent (CA), and
Central Broken (CB).

6 9 4 11 14 1 12 3 213 015 10 5 8 7
8 14 1 74, 0 6 9 I5b12 6 9 3a, 4 14 1 11
B - -
3 0510 12 11 13 2 4 11 1 14 4 3 9 6 12 14 1 8 7
13 215 0 510 7 & 510 7 8 13 215 0 2 12 3 13
1d 1d ld ld 5 11 4 10
12 3 8 7 13 2 9 6 411 015 5 10 1 14
9 6 15 0
1 13 2 14a, 0 12 3 15 9 12 3 6a, 8 13 2 7 Ld
- -
6 10 5 9 7 11 4 8 7 213 8 6 3 12 9 13 2 1 14
11 4 15 0 10 5 14 1 10 5 14 1 11 4 15 0 4 9 6 11
}d ld ld ld 0 7 8 5
9 6 1 14 11 4 312 8 7 015 10 5 2 1
) 312 15 0
211 4 13a, 0 9 615 3 9 6 12a, 1 11 4 14
- -
12 510 3 14 7 8 1 14 411 1 12 6 9 3
7 815 0 5 10 13 2 5 10 13 2 7 8 15 0
1-perfect a-perfect

Figure 45. Adjacent and Broken Central and Central Adjacent and Broken Squares.

There remain only 16, rather irregular, squares to be found. You can get them by applying
any combination of complementation and the last two of our operations to the two 1/2-perfect
squares
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and they're 8 each of the types

Adjacent Knighted (AK),
Broken Knighted (BK).

There are various permutations of the 16 numbers that occasionally lead from one magic
square to another, namely

ay: nim-add n, for example ag = (0 6)(1 7)(2 4)(3 5)(8 14)(9 15)(10 12)(11 13)

b: the big swap (0 12)(1 13)(14 2)(15 3)

e: cirele (010 12)(1 11 13)(14 4 2)(15 5 3)

d: double, mod 15 (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11)
and we've indicated some of these in the figures.

The Magic Tesseract

We'll leave it to you to rediscover the many remarkable relations between the 48 BD squares,
sometimes called pandiagonal or Nasik squares, and our Magic Tesseract in which the
vertices of every square add to 30. By projecting this along three different directions, you
can find three magic cubes in which each face adds to 14. These are the duals of the three
octahedral dice found by Andreas and Coxeter. Alternate vertices in the magic tesseract are
the odious and evil numbers , and if you replace each odious number by its opposite (nim-sum
with 15) you’ll see how the tesseract was made.
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Adams’s Amazing Magic Hexagon

Starting from the pattern

1
2 3
4 5 6
7 8
9 10 11
12 13
14 15 16
17 18
19

can you reorder the numbers from 1 to 19, taking less than 47 years, so that all five rows in
each of the three directions have the same sum?

Strip-Jack-Naked, or Beggar-My-Neighbour **1

Another problem that took almost 47 years to solve concerns this old children’s game. Each of
the two players starts with about half of the cards (held face-down), which they alternately turn
over onto a face-upwards “stack” on the table, until one of them (who's now “the commander”)
first deals one of the “commanding cards” (Jack, Queen, King, or Ace).

After one of these has been dealt, the other player (now “the responder”) turns over cards
continuously until EITHER **2 a new commanding card appears (when the players change
roles **3) or respectively 1, 2, 3, or 4 non-commanding cards have been turned over. In the
latter case, the commander turns over the stack and ajoins it to the bottom of his hand. The
responder then starts the formation of a new stack by turning over his next card, and play
continues as before.

A player who acquires all the cards is the winner and in real games, it seems that someone
always does win. The interesting mathematical question, posed by one of us many years ago,
was “is it really true that the game always ends?” Marc Paulhus has recently found the answer
to be “no!”. About 1 in 150,000 games (played with the usual 52 cards) goes on forever.

We are fairly confident that no one person has played the game anything like that number
of times, so the chance (with random shuffling) of experiencing a non-terminating game in a
lifetime’s play must be very small indeed.

Just as surely, however, the total number of times this game has been played by the
World's **4 children must be significantly larger than 150,000, so many of them will have
been theoretically non-terminating ones. We imagine, though, that in practice most of them
actually did terminate because someone made a mistake.

The Great Tantalizer

This is a tantalizing puzzle which surfaces every now and then with a new alias. We've chosen
one of the older names. An early American version was the Katzenjammer puzzle, but most
recently it has emerged under yet another name, Instant Insanity. The manufacturers seem to
be very good at selecting new names, but they never change the underlying puzzle.
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The problem

C A B D
D vl C 4

Figure 46. Pieces for The Great Tantalizer.

is to assemble the four cubes of Fig. 46 (in which the outer letters refer to the hidden faces)
into a vertical 1 x 1 x 4 tower in which each wall displays all four “colors”, A, B, C, D. If
you don't go instantly insane on playing with the cubes, you'll probably he greatly tantalized
by them.
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Figure 47. The Tantalizer Solved?

T.H. O’Beirne seems to have been the first to publish a general way of solving such problems
and we think his solution is still the best. Let’s imagine the problem solved and concentrate
on the North and South walls of the tower (Fig. 47). Then X, Y, Z, T will be A, B, C, D in
some order, as will x, v, z, t. Write the four letters A, B, C, D on a piece of paper and join

Xtox, Ytoy,Ztozand T to t.

What you'll get will probably be a way of joining ABCD into a circuit, but it might perhaps
be several circuits which together include each letter just once. For example if

XYZTxyzt

are

ABCDDCAB

we get the single circuit

A——B

X

C——-D
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while if they were
ABCDDACB

you'd get two circuits of different lengths

A—B

N
&

D

There will be a similar circuit, or system of circuits, for the East-West walls. Each of the two
systems will contain every vertex just once and have one edge for each cube.

It’s now easy to solve the puzzle by drawing the following graph (Fig. 48). The vertices of
the graph are the colors A, B, C, D and the ith cube yields three edges labelled i joining pairs
of vertices corresponding to its pairs of opposite faces. All you have to do is to select from
this graph the two separate systems of circuits which each use all four numbers and all four
vertices just once.

Figure 48. Solving the Tantalizer.

What are the possibilities for such circuit systems in the example? By considering each
possibility

1111, 211, 22, 31, 4
for the circuit lengths, you'll rapidly conclude that both systems must consist of a single 4-

circuit which can only use the letters in the cyclic order ACBD. There is only one way of
selecting two such systems without using any edge twice:
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So the Great Tantalizer has a unique solution (up to reordering the cubes and rotating or
inverting the whole tower). You can get it by pushing the cubes of Fig. 46 together left to
right and tipping the result on end.

O’Beirne takes as his basic example a five cube puzzle of this type which dates from the
first World War (Fig. 49) and uses the flags of the allies Belgium, France , Japan, Russia and
the United Kingdom. You might like to check his assertion that this has just two essentially
different solutions.

F B J U R
[B JU F R J
B R J F F U F—+ R U B
v R B J F
J F B U

Figure 49. The “Flags of the Allies” Puzzle.

Polyominoes, Polyiamonds and Searching Policy

A domino is made of two squares stuck together, so 5.W. Golomb has suggested the words
tromino, tetromino, etc. for the figures that can be made by sticking 3, 4, or more equal
squares together. He has registered the particular names pentomino (5 squares) and polyomino
(n squares) as trade-marks. Unfortunately few of the puzzles that have been proposed have
hidden secrets, so they yield to nothing better than trial and error (or systematie search). As
Rouse Ball says about Tangrams in early editions of Mathematical Recreations and FEssays,
“the recreation is not mathematical and I reluctantly content myself with a bare mention
of it”.

Here is the type of puzzle that arises. Up to rotations and reflexions there are just 12
pentominoes, for which you'll find our naming system in Chapter 25, with a total area of 60
square units. Which of the candidate rectangles

3x20 4x15 5H5x12 6x10

can be packed with them? Figure 50 shows a way of solving two of these problems at once, and
also, if the pieces are regarded as made of five cubes each, of packing the 2 x 5 x 6 box (they

i

Figure 50. Packing Pentominoes.
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will also pack a 3 x 4 x 5 box). Such problems are peculiarly susceptible to idle computers
and the 6 x 10 pentomino rectangle was one of the first to be tackled in this way when C.B.
Haselgrove found its 2339 solutions in 1960.

Noting that two equilateral triangles can form a diamond, T.H. O'Beirne has proposed the
terms triamond, ete., for figures made from three of more. Counting reflexions as distinct this
time we find there are 19 hexiamonds, named in Fig. 51, which will pack into the shape of
Fig. 52 in many thousands of different ways. The packing shown in the figure is the most
symmetric about the North-South line. (See page 920.) We'd like to see a similarly symmetric
one for the East-West line.

puiot FA0(IE,
jort

v

P‘vi?t‘

B
. ' ' .
and reflexions : — £ G WA
Figure 51. The Nineteen Hexiamonds.

This prompts a few remarks about sensible search procedures when solving puzzles or
finding strategies for games that may be too large for complete discussion. Even when you
have a large computer it’s wise to have some idea where to look. Symmetry is usually a valu-
able consideration. For instance the (nearly) left-right symmetric solutions of the hexiamond

JAVAN
VAVAVAVAVAN

S

AVAVAVAYAY
AV

Figure 52. The Most Symmetric Hexiamond Solution?
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puzzle admittedly form only a small corner of the space to be searched, but this one is likely
to be a profitable one because the constraints on opposite sides of the board are satisfied
simultaneously. However, symmetry is not the only consideration. In analyzing a game it’s
wise to try to find out what the players are really fighting for (the game’s hidden secrets).
For example the French Military Hunt game on the Small Board is small enough that you can
give an exhaustive analysis without needing to understand what’s really going on. But when
you've discovered that the players are really just fighting over the opposition you can extend
the analysis to much larger hoards for which a complete analysis would be prohibitive, even
by computer.

Many of the analyses in Winning Ways were found in this way. Only when we realized
that Dots and Boxes was really more concerned with parity than with box counting were we
able to make any headway. And it’s impossibly complicated to evaluate a reasonably sized
position in Hackenbush Hotchpotch exactly, but we got a head start when we realized that
often the atomic weight was the only thing that really mattered. In Peg Solitaire the hidden
secret turned out to be the notion of balance represented by « and 3 in Chapter 23.

Even though polyomino type problems may have no hidden secrets, some people are much
better at them than others because they subconsciously search in more likely places. Experi-
enced polyominists don’t undo their good work by repeatedly starting from seratch but keep
most of the puzzle in place while fiddling with just a few pieces at any time. When they’ve
found one solution, they can usually transform it into others by similar manipulation. For ex-
ample, from Fig. 50 you can obtain another solution by repacking pentominoces R and S, and
in Fig. 52 we can interchange the two (f, h) pairs or rotate the central (A,D E, j, j’)hexagon.

Ezercise for Experts: For what values of n can you pack n? copies of hexiamond A into a
replica of A on n times the scale?

Alan Schoen’s Cyclotome

Figure 53. Dissections of 2n-gons into Rhombs, n = 5 and 6.

Alan Schoen is patenting the interesting sequence of puzzles he derived from the well-known

dissections of 2n-gons into ( g rhombs of angles nk/n, 1 <k <n —1 (Fig. 53). He takes
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one of each of the |n/2| shapes of rhomb and one of each of the shapes you can make by
joining two rhombs in every possible way to form a hexagon. The hexagon must not contain
a straight angle, since he observes that no packing of rhombs in the 2n-gon contains a pair of
parallel edges, except those which form the rungs of the “ladders” which run between each pair
of opposite sides in every packing. This non-convexity condition is similar to that imposed
by Piet Hein in designing the Soma pieces, but here it arises naturally. Reflexions, are not
counted as different. This set of rhombs and hexagons (cyclotominoes?) will pack into the
original 2n-gon. In fact for

b2
v}
=

n = 5 and 6
thereare 1 1 3 14 and more than 150

essentially different packings. Schoen gave one of us a set of pieces for n = 8 and we were able
to assemble them as in Fig. 54. We've numbered the pieces with the values of k, where wk/n
is the smaller angle of the rhomb. Where two shapes of piece are made from the same pair of
rhombs, the one with the straighter reflex angle has its digits in natural order.

Solutions can be obtained from one another much as in O’Beirne’s Hexiamond, or as on
our Somap. In Fig. 54 the pieces 4 and 22 may be rotated or exchanged with 2 and 24, which
in turn can be rotated or reflected. After this exchange, with 2 touching 11 and 34, we have a
rotatable decagon, 1,2,.34,11,32.3 & 4 of which the last four pieces form a rotatable octagon. As
3 & 4 are contiguous, they will exchange with 34, after which 4 & 1 and 2 & 3 are contiguous,
and will swap with 14 and 23. After the original exchange, 2 may instead have two sides in
common with 13 and these two will rotate, after which 21 and 12 may be interchanged if 1 &
2 are moved as well. Or again, 2 may touch 23 & 24, so that after the 34 exchange, 2 & 3 will
swap with 32, and then 2 & 11 form a symmetric hexagon. And so on and on, yielding well

-
Aey
O,

Figure 54. Schoen’s 16-piece 16-gon. A Century or So of Solutions.




& MacMahon's Superdominoes 899

How many pieces are there in a set of cyclotominoes? According as n = 2m or 2m + 1,
there are m? —m or m? hexagons , and m rhombs in either case, so there are m? or m? +m
altogether. You can use sets for a variety of games and puzzles, ranging from Tangram-
like pictures (Fig. 55) to quite sophisticated packing problems. It’s early to say if these last
contain any hidden secrets (though Alan Schoen has noted the one about parallel edges);
there’s perhaps a better chance since there is more structure in the shapes than there was in
polyominoes and polyiamonds.

Many pleasing patterns can be produced: for example, take r2 sets of pieces and pack them
in nesting 2n-gons of side lengths 1,2... ., r.

The exponential difficulty of this sequence of puzzles prompts us to add another remark
about searching. A typical combinatorial puzzle or search of “size” n takes something like
n! trials to complete, and this is much more like n™ than <™, no matter how big vou take c.
On the other hand the number of solutions may only be ¢", and while this goes up fast, your
chance of finding one of them is only (¢/n)™ and this gets very small very fast as soon as n is
bigger than c.

W om0

Figure 55. Schoen-Shapes Made with a Sixteen Set: Rooster, Serpent and Gosling.

MacMahon'’s Superdominoes

In his New Mathematical Pastimes, MacMahon proposed a different kind of generalized domino,
got by dividing a regular polygon into colored triangles. We'll discuss just two examples. If
we use just four colors, there are exactly 24 ways of coloring a triangular superdomino, and
the standard problem is to pack these into a regular hexagon with an all black perimeter and
adjacent colors alike, as in Fig. 56.

In this case it’s hard to keep the secret hidden for very long. There are barely enough black
edges to go round, and once you've found a suitable arrangement for them the rest is fairly
easy.

When we consider the 24 three-colored square superdominoes, with which the usual problem
is to make a 4 x 6 rectangle under similar conditions, the black edge problem is much more
subtle. It can be shown that every solution to this problem has a column of four squares
in which every horizontal edge is black (the ladder) . In Fig. 57(a) the ladder occupies the
second column and in Fig. 57(b) it occupies the third. In the Extras you’ll find every possible
configuration for the hlack edges.
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Figure 57. Three-Colored Square Superdomino Solutions Showing the Ladder.

MacMahon’s superdomino problems can be made into jigsaw puzzles by using differently
shaped edges in place of colors. Thus for the three colors in MacMahon's square problem
one can use either the three edge shapes of Fig. 58(a) or those of Fig. 58(b) (which alter the
matching condition).

Figure 58. T'wo Ways of Making a MacMahon Jigsaw Puzzle.




MacMahon's Superdominoes
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Figure 59. Conway’s Christmas Card, 1968.
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o

Figure 60. Paterson’s Wrestling Match.
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Some years ago one of us sent out a Christmas card (Fig. 59) in the form of a jigsaw
puzzle based on Fig. 58(b). The assembly in Fig. 59 is not a solution because it contains heads
connected directly to hands and necks connected directly to arms. Can you turn it into an
anatomically correct solution? Figure 60 is M.S. Paterson’s modification of this idea, using
another shape system. You must rearrange the pieces so that each wrestler has a properly
connected body consisting of one head, one torso, one pair of shorts, two arms and two legs!

Quintominal Dodecahedra

The MacMahon superdominoes with five or more sides have not received much attention, but
here’s a nice little problem. There are 12 different quintominoes if we use five different colors
once each and allow turning over. Can you fit them, colors matching, onto the 12 faces of a
regular dodecahedron?

The Doomsday Rule

Here's an easy way to find the day of the week for an arbitrary date in an arbitrary year. The
day of the week on which the last day of February falls in any given yvear will be called the
doomsday for that year. For instance, in year 1000, doomsday (Feb. 29) was a Thursday
(THOUSday). Then the following dates in any year are all doomsdays:

Feb 28/29 Jan 31/32

(the second alternative in leap years), otherwise for even months,
Apr4d Jun6 Aug8 Oct 10 Dec 12
(the number of the month in the year), and for odd ones,
Mar3+4 Maybh+4 Jul7+4 Sep9-4 Novl1l-4

(add 4 for the 31-day, long, months; subtract 4 for 30-day, short, ones). Here’s a summary
with memos.

Jan Feb Mar Apr May Jun  Jul Aug  Sep Oct Nov Dec
31/32 28/29 7 4 9 6 11 8 5 10 7 12
“last” last long 3 even 4 long 5 even 6 long 7 even 8 short 9 even 10 short 11 even 12

You should get used to finding other doomsdays in each month by changing the given one
by weeks or fortnights; for example, since

Jul 11 is a doomsday, so is Jul 4 (Independence Day),

d si
and stice Dec 12 is a doomsday, so is Dec 26 (Boxing Day).

so these are all the same day of the week (Sunday in 1937, for example).

On what day of the week was May-Day in the year 10007 May 9, and so May 2, were doomsdays
(Thursdays in year 1000), so May 1 was a Wednesday.
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It’s easy to go wrong when adding numbers to days, so we suggest you use our mnemonics

NUN-day ONE-day TWOS-day TREBLES-day FOURS-day FIVE-day SIXER-day SE'EN-day
Sunday Monday Tuesday  Wednesday Thursday  Friday Saturday Sunday

Let’s suppose we want Michaelmas Day (Sep 29) in the year 1000: we say
Sep 5 (short 9) and so Sep 26 are doomsdays (Thursdays—FOURS-days) so
Sep 29 is 3 on FOURS-day = SE’EN-day (Sunday).

To find doomsday for any year in a given century, you should add to the doomsday for the
century year,

the number of dezens after that year,
the remainder after this, and
the number of fours in the remainder.

For example, for the year 1066 we say

THOUS
Thurs day, 5 dozen, 6 and 1,
FOURS
(60) (remainder) (4’s in 6)
and since 4 + 5 + 6 + 1 = 2, mod 7,

doomsday in 1066 was a TWOS-day, and so the Battle of Hastings (Oct 14) was fought on a
4 on TWOS-day = SIXER-day (Saturday).
Let’s do some years in our own century, given that 1900 = Wednesday = TREBLES-day.

Aug 4, 19 14
4 off TREBLES-day, 1 dozen, 2 (and 0) = TWOS-day (Tuesday),

Nov 11, 19 18
4 on TREBLES-day, 1 dozen, 6 and 1 = 15-day = ONE-day (Monday).

Of course, whole weeks can be cancelled, so the parentheses in
(4 on TREBLES) 1, (6 and 1)

can be forgotten, making the answer immediate.
In the Julian calendar (as instituted by Julius Caesar) each century was one day earlier
than the last, and so

0 100 200 300 400 500 600
700 800 900 1000 1100 1200 1300
1400 1500 1600 1700

were

Sunday Saturday Friday Thursday Wednesday Tuesday Monday.
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But in the modern, Gregorian, calendar (as reformed by Pope Gregory XIII)

. 1500
1600 1700 1800 1900
2000 2100 2200
are
Tuesday Sunday Friday Wednesday

because each century year that is not a multiple of 400 drops its leap day, and so is twoe days
earlier than the previous one. In practice, remember that 1900 was a Wednesday, and that
each step backwards to 1800, 1700, 1600 adds two days.

Thus, since Jul 4 is a doomsday,

Jul 4, 17— 76
was
exactly Sunday, 6 dozen, 4 and ¥ = Thursday.

Various countries adopted the Gregorian reform by omitting various days; for example,

in Italy, France and Spain, Oct 5-14, 1582.
in Britain and the American colonies, Sep 3-13,1752,
elsewhere, various dates between 1583 (Poland) and 1923 (Greece).

You should also remember that the start of the year has not always been Jan 1. For some
time before 1066 it was Christmas Day of the previous year, and for several centuries it was
Mar 25 (so called Old Style dating, which was abolished in 1752). Such things are ignored in
the Doomsday Rule, but, along with varying national conventions, must be accounted for in
subtle examples:

Apr 23, 1616 (England) = 2 off Friday, 1 dozen, 4 and 1 = Tuesday (Shakespeare’s deathday),
Apr 23, 1616 (Spain) = 2 off Tuesday, 1 dozen, 4 and 1 = Saturday (Cervantes’ deathday),
Feb 29, 1603 (England) = exactly Friday, 0 dozen, 4 and 1 = Wednesday (Whitgift’s deathday).

This “1603” must obviously be 1604 (New Style). Archbishop Whitgift was Queen Eliza-
beth’s “worthy prelate” and first chairman of the commission which eventually produced the
Authorized Version of the Bible.

The ambiguous days from Jan 1 through Mar 24 in years between about 1300 and 1752
were usually written in the “double dating” convention; e.g. Queen Elizabeth’s deathday was
Mar. 24, 1602/3 for which we find “3 on Fri + 3” = Thursday.

When calculating a B.C. date, it's best to add a big enough multiple of 28 (or 700) years
to make it into an A.D. one, remembering that there was no year 0 (1 B.C. was immediately
followed by 1 A.D.). Thus, in the Julian system we add 4200 to

Oct 23, 4004 B.C., getting Oct 23, 197 A.D. (not 196),

and giving

1 off SIXER-day, 8 dozen, 1 (and 0) = SE’EN-day = Sunday

for the day of Creation, according to Archbishop Ussher.
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Problem: 1. On what weekday is the 13th of the month most likely to fall in the Gregorian
calendar?

...and Easter Easily

A number of sources give more or less complicated rules for determining Easter. These usually
apply only over limited ranges and are sometimes incorrect, even in reputable works, because
they neglect the exceptions in the simple rule below.

Easter Day is defined to be the first Sunday strictly later than the Paschal full moon,
which is a kind of arithmetical approximation to the astronomical one. The Paschal full moon
is given by the formula

(Apr 19 = Mar 50) — (11G + C)mod 30

except that when the formula gives
Apr 19 vou should take Apr 18
and when it gives
Apr 18 and G > 12, you should take Apr 17.
In the formula,

G(the Golden number) = Yeary.q10 + 1 (never forget to add the 1!)
C(the Century term) =+ 3 for all Julian years

—4 for 15xx, 16xx

—5 for 17xx, 18xx Gregorian

—6 for 19xx, 20xx, 21xx
The general formula for C in a Gregorian year Hxx is
~H + [H/4] + [8(H + 11)/25] .
The next Sunday is then easily found by the Doomsday rule. Example

1945 = 7, mod 19 so G = 8 and we find for the Paschal full moon:
Mar 50 — (88 — 6)mod 30 = Mar 50 — 22 = Mar 28.

Because this is a Doomsday, it's very easy to work out that it is
“exactly Wed (+3 + 9 + 2)*“.

Easter Day, 1945, was therefore Mar 32, April Fool’s Day.
For 1981 (= 5, mod 19) the formula gives

Apr 19 — (66 — 6)medso = Apr 19,
so the Paschal full moon is
Apr 18 = Doomsday, 1981 = Saturday,

so Easter Sunday, in 1981, was Apr 19.
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Here is an example in the Julian system:
1573: P.F.M. = Mar 50 — (176 + 3) 0430 = Mar 50 — 29 = Mar 21 = Saturday,

so Easter Day, 1573 was Mar 22. Since this date is still in the Old Style 1572, we can say that
that year contained two Easters!

You should use the Julian system even today if you want to know when the Orthodox
churches celebrate Easter. Example:

Julian P.F.M. 1984 = Apr 19 — (99 + 3)moaso = Apr 7.
The next Doomsday is Apr 11, which is, still in the Julian system,

Tuesday, 7 dozen = Tuesday,
(Julian 1900)

so that Orthodox Easter Day, 1984 is the Julian date, Apr 9. Since the Julian calendar is now
13 days out of date, this is Apr 22 in the Gregorian system.
Differences between Julian and Gregorian dates:

15xx, 16xx, 17xx, 18xx, 193, 20xx, 21xx,
10 days, 10 days, 11 days, 12 days, 13 days, 13 days, 14 days,

How Old is the Moon?

If you stand on the earth and watch the sun and moon going round you, yvou’ll see that they
take about 3652 [365 - 242199] and 30 [29 - 530588 or 292] days to do so, on average [brackets
like these contain better approximations to various numbers].

From these facts you can deduce that the number of days that have passed since the last
new moon is approximately:

(day number) + (month number) + (year number) + (century number),

all reduced mod 30 [29 g]
The day number is the number of the day in the month.
The month number

for Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
is 3 4 3 4 5 6 T 8 9 10 11 12
22 4 2& 32 43 6 62 8 92 105 115 115

1
(or just remember that the rule is about — a day late/early in the long/short odd months).
The year number for a year whose last two digits are congruent, modulo 19,
to 0 =£1 +2 +3 +4 +5 +6 +7 +8 +9

is 0 £11  £22 203 14 425 206 £17  £28 £09
[0 +105 211 435 =£14 £24%5 63 +17; +28 £94]
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[with an additional

1 L 0 - 1

L 1L 1
2 1 1 2
in years 4n (after leap day) 4n+1 4n+2 4n+3 4n + 4 (before leap day)].
The century number for the Gregorian centuries

1oxx  16xx 17xx 18xx 19xx 20xx 2lxx 22xx  23xx 24xx
is 165 12 6% 13 -4 -8y -132 -19 -24; -282

and, for the Julian centuries

8xx O 10xx  llxx  12xx 13xx  ldxx  1dxx  loxx  17xx

27 22% 18% 14 9%  h:r 41 33 73 12

To remember these,
the day number is easy,
the month number also, except for Jan = 3, Feb = 4.
the year number’s tens digit is its units digit reduced, modulo 3,
the centuries 14xx and 19xx are +1 and —4; and a short century (36524 days)
drops back ’3% days, while a long century (36525 days) drops back 4% days
(because 1273 lunations take 365294[36529 - 337] days).

Thus (using only the rough numbers) on Christmas Day, 1984, the moon will be
25 + 12 + (+28) — 4(mod30) = 1 day old,

since 84 = 48, mod 19 and 8 = 2, mod 3. But, applying the formula to New Year’s Day 1985
we find

14 3(") + (+09) — 4 = 9 days old

despite the interval of exactly 7 days. The true motion of the moon is very complicated, and
such a simple rule can only hope to give answers to within a day or so. If you're watching the
moon late at night, for instance, remember that 11:00 p.m. is nearer tomorrow than today
because the rule is attuned to the start of the day.

Of course a moon’s age of about

0, 71, 15, 22

3=

days corresponds to
New Moon, First Quarter, Full Moon, Last Quarter.

Those who like to keep mental track of the moon throughout a year should remember the
total number for that year, e.g.

in 1998, day number + month number -1,
in 1999, day number 4+ month number + 10 ete.

2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
~8, 43, £15, -4, 47, —12, -1, 410, -9. +2, 413
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Jewish New Year (Rosh Hashana)

Here's how to calculate the date of the Jewish New Year (Rosh Hashana) for and year Y = 1900

+ ¥ in the range 1900 (inclusive) to 2100 (exclusive). You first compute F = (12G) 04 10 and

then use the formula (in which you usually ignore the fraction by which it exceeds an integer):
F+1 1 2y

3
6 _F T - 'mo Ep—
Sep 6+ 5F + —g= + [Ymoas — G35

However it must be postponed from any

TUE MON
SUN WED FRI if fraction > -633 if fraction > -898
and if F > 6 and if F> 11
to the following
MON THU SAT THU (not WED) TUE

For years outside this range, you should replace
Sep 6 by Sep 6 {[Y/100] — [Y/400] — 9} in Gregorian years, and by Aug 24 in Julian.

2y, 2AY-1900) -1 F 112100 - Y) + 7(F ~ 1)
630 ° 630 760 3447360
1367 23269
633 b — .63287037.... -898 by — .897723765. ..
333 by o750 — 032870 » 898 by orgeg =8 ”

(the last three replacements seldom affect the answer).




Extras

Blocks-in-a-Box

The key to this puzzle is that every piece except the three 3 x 1 x 1 rods occupies as many
“black™ cells as “white” in every layer. The rods must therefore be arranged so as to correct
the color compositions in all fifteen layers simultaneously. It turns out that there is a unique
arrangement which does this. Figure 61 also shows the only three dispositions for the 2 x 2
x 2 cube and 2 x 2 x 1 square. With these five pieces in place, the puzzle becomes easy.

Figure 61. Were You Able to Fit the Blocks-in-a-Box?

A much harder puzzle is to pack 41 1 x 2 x 4 planks (together with 15 1 x 1 x 1 holes)

intoa 7 x 7 x 7 box (see reference to Foregger, and to Mather, who proves that 42 planks
can’t be packed.)

The Somap

The Soma pieces 1 = W, 2 =Y and 4 = O, while themselves symmetrical, may appear on the
surface of the cube in either the derter fashion

Sl
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or the sinister one

1] e

so vou can tell which of these pieces are dexter by giving the sum of their numbers, which we
call the dexterity of the solution. The symbols

DC DC DC

na nb ne

refer to different solutions having deficient piece D, central piece C and dexterity n, a single
capital letter indicating that the same piece is both deficient and central. Thus

RL RL RL RL

Ha 5h He hd
are four solutions in which Red is deficient, bLue is central and pieces 1 and 4 are dexter
(1+4=5), while

B B B
Ga 6b 6c

are solutions in which Black is deficient and central while 2 and 4 are dexter.
Along with the solutions in Fig. 62, there are their reflexions whose names are found by
interchanging R and L and replacing n by

3—n, 6 —n, 7T —n,
in the cases

O central, W central, otherwise.

When two solutions are related by changing just two pieces, P and Q, this is indicated by a
solid line PQ. Some three-piece changes are indicated by dashed lines in a similar way. So all
that’s left for you to do is to find a suitable solution which you can locate on the Somap, and
this will then lead you to all the others except R7d.

Solutions to the Arithmetico-Geometric Puzzle

Figure 63 shows how we indicate layers in this puzzle by using a or a, according to orientation,
for an a-high block, etc. The 21 solutions to Hoffman's puzzle are exhibited in Table 1 in this
notation. When, as usual, only the middle layer is shown, another layer is separated from it
by a letter S, and the remaining one is the special layer of Fig. 63. The meanings of the other
letters in Table 1 are:

R: reflect the special layer across the dotted diagonal,

S: swap the two non-special layers,

S’ swap two adjacent layers in a different direction,

T: tamper with a 2 x 2 x 2 corner, not involving the special layer,

T’: tamper with a 2 x 2 x 2 corner, which does involve the special layer.
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Figure 63. The Special Layer.

We'll leave it to you to work out why this gives just 21 solutions, and to verify that of
these, exactly 17 have duals, obtained by replacing the dimensions a, b, ¢ by ¢, b, a. Just one
of the solutions (which?) is self-dual. This solution has the remarkable property that it can
be repeatedly transformed (into rotations of itself!) by transporting either of two special faces
to the opposite side.

Raphael Robinson and David Seal have found ways of combining solutions to the Arithmetico-
Geometric puzzle in various dimensions to produce higher-dimensional ones. For example, if

a=a1+as+az and b=by +by+by

we know how to pack 27
a1 X a2 X az or bl * bz * b;;

blocks into an
axaxa or bxbxb

cube. The Cartesian product of these gives us a way of packing 272 = 729
a1 X as X az X by X by % by
6-dimensional hyperblocks into a single
axaxaxbxbxb

hyperblock. But now the Cartesian product of three copies of Fig. 7 gives us a way to pack
4% = 64 of these

a X b % a X b X a b b
(@a+b) x (@a+b) x (a+b) x (a+b) x (a+b) x (a+b)

hypercube.

In general the method combines m-dimensional and n-dimensional solutions to give an
mn-dimensional one. We hope Omar will tell us how to deal with dimensions 5, 7, 11 and
S0 onm.




w

Solutions to the Arithmetico-Geometric Puzzle

B ¢ b B < b B ¢ y B ¥ o¢ &
a a|Tiy a «2a|T|ly o a|T|b « b o B
b a ¢ b a ¢ a b ¢ a ¢ a
S S s S S
c a c 7y a ¢c ¥ a b ¢ b B o«
¥ B|T|b ¢ B|T|h ¢ B|T|c v c 7 4
2 a o a b « a b a b o
R R R R R
7o p B oa ¥y B o v B v
¢ a|Tle v a|Tle v BT |y ¢ b ¢ f
b B o b f a b a x b ¥ oox a
s 5 S 8 s
B v g c v e v c B ¢ B v
« | T o B|T|b a a[T|b a vy a «
a o v ooa f Yy o f v x b f
g S T r

7o Y £ = gy 7B

¢ a P ' | Yy ¢ f ¢ !

b B a b f b a a b o

By B e v c B ¥ g ¢

b | T|a & & a « | Tla &

a o Yy a o «a y £ a7

a b a o b a o b a «

a ¢ b a ¢ b a ¢ b a

e g ¢ v c By ¢ B

Table 1. The 21 Solutions to Hoffman’s Puzzle.
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...and One for “Three” Too!

0 0 2 1 1 0 1 0 0
0 0 2 1 2 1 1 2 2
2 2 1 0 1 1 0 2 2

There’s only one other solution. Hint: add = + y + =z.

Hares and Tortoises
Make the moves in this order (jumps are bold):
HTTHHHTT T HHHT,T,H

If you move only one kind of animal for as long as you can before moving the other kind, you'll
soon see how to swap 57 Hares with 57 Tortoises.
Solutions to the other coin problems (heads are bold) are:

Start from 012345; move 01 to 67, 56 to 89 and 23 to 56;
or 01 to 76, 23 to 98 and 56 to 65.

Start from 01234567; move 12 to 89, 45 to 12, 78 to 45 and 01 to 78;
or 67 to 98, 01 to 76, 34 to 43 and 78 to 87.

M. Delannoy has shown that the first problem with n pairs of coins can always be solved in
just n moves. However the second problem, due to Tait, requires n + 1 moves if n > 4. For
some reason which we don’t understand, we have always found these little problems confusing
and can never remember their solutions!

The last little coin puzzle is one of the simplest examples we know of a psychological block.
You notice that four coins are already in position (Fig. 64(a)), so you're reluctant either to
move one of them (Fig. 64(b)) or to waste time by replacing it (Fig. 64(c)), but that’s the only
way to get to Fig. 64(d) in three moves. There’s a four-move version in which you start with
a triangle.

(b)

Figure 64. How to Infuriate Your Friends.

The Lucky Seven Puzzle

The Lucky Seven Puzzle has a solution in which just seven discs are slid down the bridge,
alternately from the left and right sides:

1,7,2 6, 3,5, 4.
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Top Face Alterations for the Hungarian Cube

Top Face Alterations for the Hungarian Cube
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We give the shortest known sequences for all permutations (Table 2) and for all combinations
of flips and twists (Table 3) in the top layer. The numbers are the numbers of moves, but not
counting any final top turns (U*) which can all be saved to the end. David Seal has proved
that most of these are best possible.

Table 2. Top Layer Permutation Sequences. (the lower sequence of a pair refers to the

reflected picture)

n—0

Ly ]
7.
* = =
i
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GO
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B
N> <7
¢ 09
S 689 2
ek £
& 09
de 050 23
s &R
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9

o

o0

oo
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ur
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FUFUFUFU "
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FUBRUFUBU'?
FUBUFUBU "

FURURFU"
FULULFU~"

R'FL'ULUFRU"
LFRURUFLU™

BUBRFUFRU"
BUBLFUFLU™"

RFUFURURURL

left-right
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no moves required
FUFDRUR'D'UFLUFU
LFULFB'UR'FURFBU
L2F2LAUPR'LFL'RUALAFILAU

RULU*R'F*RFPURUL'U?
RUZL'UB’L'B'LU’R'ULU?

RU'LUZR*FUTUR?U*R'L'U
BFUF2U'L'ULF*U*BUFL’

R'UL'U*R*BUB'U'R*URLU
F'B'U*B*ULUL'B*UPFUBU

F'DFUFDFL'U LUFU*FU
LUL*U'BUBL DL TULDLL

B’D BUBDRLULUBLZHLY
LUL*UFUF L LUL DL

RURF*D'R*BL'BR*NDEFRFTF
BL'BD'L*FRFL’DB’L*U'L'U?

LD BLB UL BDE LU
B*R’BD'F'RU’F?RFRDBR'U?

BU2BR?FD?FLFL?F’ ¥ R*B’
RFPLD*L’B’LBLDL'F R U?

R'BD‘BRU‘R'BD*BRU?

BUFU'BUF'L'ULUF’UF
LURUL'U*R’BURUR*UR

L'UBL'D'BD?R-LYB*LAUFU?
BURFDLDFDRFURL?
R'FFLDFLFI¥LFRRU*

BRELFDYLFL'DFL'R*BU?

FL’D'B*'D'R*B'R'FR*D'F*D'L*B'U

U
RLI

¢an 8

Paoc 8o 8~ B

®an

pen mn®o me pRo pop Do op @ opOE oo @p o8

Table 3. Top Layer Flip and Twist Sequences. (the lower

a and c swapped)

* o

12

[rd

1

o ®o Coo

14

o &

eI o]
[ =]

12

LB N+

12

LERR ¢ LR N )

Lo T = K 4 B #1 Lol e

12

Ll o}

14

~ e

14

i4

rop N oop o%p o000 OO0

sequence of a pair refers to the picture with

RULUDR* D RU?LURU
BUFUR*DLUDFUBU

LRUR*BR'B*UBTL
LU*BUB*RBR*URL’

FU’R'UR’BRB*UBF
F'BUB*RBR?*URU?*F

PRIFUFIR'F'R*UR'UF*RF?
[PR*FAUZRURFRFUFR’F?

B.-UrB12LJBrL?,UJLruf'.
RUR*FRF*UFU?

BLU?*B'UB’L'BL ULB
BL*UL*BLB*UBUL'B

RFUFRFRURU’FR
R'FU*RUR?*FRF?UF*R

LUBUBLBLUL'UBU?
FURURFRFUFURL?

R?B*RIURL DL U LD'LAURU
LUFU'FL'R'UF'UFR
RFUFURLFUFUL
RBUB'LR'LBURUL
L'UBUBLRUBUBR
FUFULURLUR UF UL
R'U'FL'R'UF UFRLUFR
LUPFUPFLIPLIPUFURLY?
R'UPRUPR’BD'R ER’FDBUR T
R'F2U'D'LFLFDULFL'FR
RFLFLUDFLFLDUFR

RURRMIRURBIIFREIRBLI®
FLFLMU?FLUL' UL FULU?

BT FURFD*BLUFU'FLU
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The Century Puzzle

The Century Puzzle is so called because it takes exactly 100 moves, and the Century-and-a-Half
takes 151 according to the official rules, but since the first and last are only half-moves, we can
obviously count it as 150 whole moves. You can see solutions to both puzzles in Fig. 65, and
by turning the book upside-down you’ll see the only other 100-move solution to the Century.

0-1 7-8 12-13 48-49
[
99-100 90-91 80-81 70-71 64-65 \ 57-58
[$=05 05-65 0L-69 08-6L 98-S8 £6-76 001-66
[14-113 129-130 137-138 142-143 150-151
9e-st 12-0T e1-zl 8-L [-0

Figure 65. Solutions to the Century and Century-and-a-Half Puzzles.

Adams’s Amazing Magic Hexagon

15
14 13
9 3 10
6 4
11 5 12
1 2
18 7 16
17 19

3

In Martin Gardner's Sixth Book of Mathematical Games you can read the remarkable
history of Clifford W. Adams’s discovery and of Charles W. Trigg’s uniqueness proof. It's easy
to see that a diameter d magic hexagon uses the numbers from 1 to (3d2 +1)/4, which add to

1/3d2+1 3d2 +5 1 :
1 2} = = (9d* + 184% + 5)
2 4 4 32

so that each of its d columns must add to
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1 ) 5
— (9d® + 18d + =
5 (g £18d+ d)

which can only be an integer if d divides 5. Frank Tapson has discovered that one William
Radcliffe had already found the ‘Adams Hexagon' and registered it at Stationers Hall, London,
in 1896. We thank Victor Meally for this information.

Flags of the Allies Solution

If you use the O'Beirne method you will find the two pairs of 5-circuits

which lead to the solutions shown in Fig 49 and Fig. 66.

R

I U
.l‘ B

B

I
U B F F

Y

F R B

Figure 66. The Other Solution to the Flags of the Allies Problems.

R

R
| U
R F J
: |
U

.
‘ B

U ‘ B R
J

All Hexiamond Solutions Found

In May 1996 Marc Paulhus wrote a program that used only a few days of computer time to
find all solutions to O’Beirne’s Hexiamond puzzle. Independently, in 1999, Donald Knuth also
ran a program (in 5 hours and 21 minutes on a 450 MHz Pentium I} which found one more
solution than Paulhus had found. Paulhus reran his program and this time really found them
all. The initial run must have contained a machine error!

The numbers of solutions, classified according to how far out the Hexagon appears: A in a
corner, B in a side, C, ..., F, G in the centre, are

A 75490 B 15717 C 6675 D 7549 E 11447 F 5727 G 1914
with a total of 124519 solutions, of which Figure 52 is indeed the most symmetrical.
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The Three Quintominal Dodecahedra

The three quintominal dodecahedra should be recoverable from

12345 = A 12354 =B 12435 =C 12453 =D 12534 =E 12543 =F
13245 =G 13204 =H 13425 =] 13524 =K 14235 =L 14325 = M.

Answer to Exercise for Experts

We have a rather complicated proof that n? copies of hexiamond A can be used to replicate
A on a larger scale only if n = 0 or £1 mod 6. Our proof establishes that these are the only
values of n for which the relations (look at the foot of the previous page)

U?D? = DUDU and D?U? = UDUD
imply
IJZ?’LDZR — DrUrD"U™,

We've also shown that none of the usual kinds of coloring argunment excludes other values of n.

Where Do the Black Edges of MacMahon Squares Go?

Round the outside, of course, but there are six more inside. These can be arranged in 20
different ways. In the first two the ladder is in the third column, otherwise it’s in the second.
The last row of Fig. 67 contains 6 + 6 + 2 arrangements: the dotted lines are alternative
positions for the sixth black edge.
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BN | L

Figure 67. The Twenty Black Edge Arrangements for MacMahon Squares.

A Doomsday Answer

A tedious enumeration shows that in the 400 years of the Gregorian cycle Doomsday is

Sun. Mon Tue Wed Thu Fri Sat
for 43 43 43 43 44 43 44  ordinary years
and 13 15 13 15 13 14 14  leap vears

From this you can work out that the 13th day falls on

Sun Mon Tue Wed Thu Fri Sat
in 687 685 685 67 684 688 684 months,

verifying B.H. Brown’'s assertion that the 13th of a month is just a little bit more likely to be
a Friday than any other day of the week!
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What is Life?

Life's not always as simple as mathematics, Abraham!
Mrs. Abraham Fraenkel.

Life’s too important a matter to be taken seriously.
Oscar Wilde.

...1n real life mistakes are likely to be irrevocable.
Computer simulation, however, makes it economically practical
to make mistakes on purpose. If you are astute, therefore,
you can learn much more than they cost. Furthermore, if you
are at all discreet, no one but you need ever know you made
a mistake.

John McLeod and John Osborn, Natural Automata

and Useful Simulations, Macmillan, 1966.

Most of this book has been about two-player games, and our last two chapters were about
one player games. Now we're going to talk about a no-player game, the Game of Life! Our
younger readers won't have learned much about Life, so we'd hetter tell you some of the facts.

Life is a “game” played on an infinite squared board. At any time some of the cells will be
live and others dead . Which cells are live at time 0 is up to you! But then you've nothing
else to do, because the state at any later time follows inexorably from the previous one by the
rules of the game:

BIRTH. A cell that’s dead at time ¢ becomes live at t + 1 only if exactly three of its eight
neighbors were live at .

DEATH by overcrowding. A cell that’s live at ¢ and has four or more of its eight
neighbors live at ¢ will be dead by time ¢ + 1.

DEATH by exposure. A live cell that has only one live neighbor, or none at all, at time ¢,
will also be dead at ¢ + 1.

These are the only causes of death , so we can take a more positive viewpoint and describe
instead the rule for

SURVIVAL. A cell that was live at time ¢t will remain live at ¢ + 1 if and only if it had just
2 or 3 live neighbors at time ¢.

927
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Just 3 for BIRTH
2 or 3 for SURVIVAL

A fairly typical Life History is shown in Fig. 1. We chose a simple line of five live cells for
our generation 0. In the figures a circle denotes a live cell .

Which of these will survive to generation 17 The two end cells have just one neighbor each
and so will die of exposure. But the three inner ones have two living neighbors and so will
survive. That’s why we've filled in those circles.

| ...
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Figure 1. A Line of Five Becomes Traffic Lights.

What about births at time 1?7 There are three cells on either side of the line that are dead
at time 0, but have exactly three live neighbors, so will come to life at time 1. We've shown
these prospective births by dots in the figure.

So at time 1 the configuration will be a solid 3 x 3 square. Let’s briefly follow its later
progress.

Time 1-2: The corners will survive, having 3 neighbors each, but everything else will die of

overcrowding. There will be 4 births, one by the middle of each side.

2-3: We see a ring in which each live cell has 2 neighbors so everything survives; there
are 4 births inside.

3-4: Massive overcrowding kills off all except the 4 outer cells, but neighbors of these
are born to form:

4-5: another survival ring with 8 happy events about to take place.

5-6: More overcrowding again leaves just 4 survivors. This time the neighboring births
form:

6-7: four separated lines of 3, called Blinkers, which will never interact again.

7-8-9-10-... At each generation the tips of the Blinkers die of exposure but the births
on each side reform the line in a perpendicular direction.
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The configuration will therefore oscillate with period two forever. The final pair of configura-
tions is sufficiently common to deserve a name. We call them Traffic Lights.

—

Time 0

2 3 S0
(a.) 0%0 'g' oéo g e ABW
b e S =+ A Blanker

©) - oo tH & -+ ABlock

Figure 2. If Three Survive, They'll Make a Blinker or a Block.

The Blinker is also quite common on its own (Fig. 2a). Most other starting configurations
of three live cells will blank out completely in two moves (Fig. 2(b)). But if you start with
three of the four cells of a 2 x 2 block, the fourth cell will be born and then the Block will
be stable (Fig. 2(c)) because each cell is neighbored by the three others.

Still Life

It’s easy to find other stable configurations. The commonest such Still Life can be seen in
Fig. 3 along with their traditional names. The simple cases are usually loops in which each
live cell has two or three neighbors according to local curvature, but the exact shape of the
loop is important for effective birth control.

Bahive Iocaf Pond Tub Block Stake oo, e

Buge Bt Ship Loghany Loghot LngStip oy Farm.

Figure 3. Some of the Commoner Forms of Still Life.
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Life Cycles

The blinker is the simplest example of a configuration whose life history repeats itself with
period > 1. Lifenthusiasts (a word due to Robert T. Wainwright) have found many other such
configurations, a number of which are shown in Figs. 4 to 8.

Figure 4. Three Life Cycles with Period Two.

oed o

Figure 5. Two Life Cycles with Period Three, (a) Two Eaters Gnash at Each Other, (b) The Cam-
bridge Pulsar CP 48-56-T2.
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Figure 6. A Flip-Flop by the Gosper Group.

The Glider and Other Space Ships

When we first tracked the r-pentomino (you'll hear about that soon) some guy suddenly said,
“Come over here, there’s a piece that’s walking!” We came over and found Fig. 9.

You'll see that generation 4 is just like generation 0 but moved one diagonal place, so that
the configuration will steadily move across the plane. Because the arrangements at times 2,
6, 10, ... are related to those at times 0, 4, 8, 12, ... by the symmetry that geometers call a
glide reflexion, we call this creature the glider . But when you see Life played at the right
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Figure 9. The Glider Moves One Square Diagonally Each Four Generations.
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speed by a computer on a visual display, you'll see that the glider walks quite seductively,
wagging its tail behind it. We'll see quite a lot of the glider in this chapter.

Figure 10. (a) Lightweight, (b) Middleweight, (c¢) Heavyweight Spaceships.

It was at just such a visual computer display that one of us first noticed the spaceship
of Fig. 10(a) (and was very lucky to be able to stop the machine just before it would have
crashed into another configuration). This lightweight spaceship immediately generalizes to
the middleweight and heavyweight ones (Figs. 10(b) and (c)) but longer versions turn out
to be unstable. It was later discovered, however, that arbitrarily long spaceships can still travel
provided they are suitably escorted by small ones (Fig. 11). All the spaceships, as drawn,
move Eastwards.
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Figure 11. An Overweight Spaceship Escorted by Two Heavyweight Ones.
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The Unpredictability of Life

Is there some way to foretell the destiny of a Life pattern? Will it eventually fade away com-
pletely? Or become static? Oscillate? Travel across the plane, or maybe expand indefinitely?
Let’s look at what should be a very simple starting configuration—a straight line of n live cells

n=1or2 fades immediately,

n=23 is the Blinker:

n =4 becomes a Beehive at time 2,

n=>5 gave Traffic Lights (Fig. 1) at time 6,

n=~0 fades at t = 12,

n=7 makes a beautifully symmetric display before terminating in the

Honey Farm (Fig. 3) at ¢ = 14;

n =8 gives 4 blocks and 4 beehives,
n=79 makes two sets of Traffic Lights,
n =10 turns into the pentadecathlon, with a life cycle of 15,
n =11 becomes two blinkers,
n=12 makes two beehives,
n =13 turns into two blinkers,
n=14
and vanish completely,
n =15
n =16 makes a big set of Traffic Lights with 8 blinkers,
n=17 becomes 4 blocks,
n=18
and fade away entirely,
n =19
n = 20 makes just 2 blocks,
and so on.

What's the general pattern? Even when we follow the configurations which start with a
very small number of cells, it’s not easy to see what goes on. There are 12 edge-connected
regions with 5 cells (S.W. Golomb calls them pentominoes). Here are their histories:
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Figure Qur mnemonic Destiny
becomes Traffic Lights (Fig. 1) at time 6.

fades at time 4.

becomes Traffic Lights at time 9.

reaches a steady state at time 1103, con-
sisting of 4 Blinkers, 1 Ship, 1 Boat,

1| Loaf, 4 Beehives, and 8 Blocks, having
emitted 6 Gliders! (For a picture, see

p. 105 of the Sci. Amer, for Jan. 1971.)

fades at time 4.

becomes Trallic Lights at time 10.
fades at time 4,

becomes W at time 1, then
becomes a Loaf 2 generations later.

becomes Traffic Lights at time 6.

fades at time 3, and so does

X $LCHAY v (o]

Je8dBien & fmf

Once again, it doesn’t seem easy to detect any general rule.

Here, in Figs. 12 and 13 are some other configurations with specially interesting Life
Histories, for you to try your skill with.

Can the population of a Life configuration grow without limit? Yes! The $50.00 prize that
one of us offered for settling this question was won in November 1970 by a group at M.LT.
headed by R.W. Gosper. Gosper’s ingenious glider gun (Fig. 14) emits a new glider every
30 generations. Fortunately it was just what we wanted to complete our proof that

Life is really
unpredictable!




ab t=6,art=4 at 1=5. .
ceeeo oeeeo bucomes Pulsar CP48-56-12 at t=21.
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Figure 12. Exercises for the Reader.
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Figure 14. Gosper’s Glider Gun.

Gardens of Eden

There are Life configurations that can only arise as the initial state, because they have no
ancestors!

We'll prove that if n is sufficiently large, there is some configuration within a 5n — 2 by
5n — 2 square that has no parent. It will suffice to examine that part of a prospective parent
that lies in the surrounding 5n x 5n square (Fig. 15). If any one of the component 5 x 5
squares is empty, it can be replaced as in Fig. 15(b) without affecting subsequent generations.
So we need consider only

a5 . 2 A . OOGE e anT 2 ge 2
(22,.1 l)n — 22,4 999999957004337..n of the 22\:71,

configurations in the 5n by 5n square. However, there are exactly
5(5n—2)7 _ 926n%—20n+4
possible configurations in the 5n — 2 by 5n — 2 square, so that if
24 - 999999957004337 . .. n* < 25m% — 20n + 4,

one of these will have no parent! We calculate that this happens for n = 465163200, so that
there is a Garden of Eden configuration that will fit comfortably inside a

2325816000 by 2325816000 square!
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Figure 15. Location of the Garden of Eden.

This type of argument was first used by E.F. Moore in a more general context. Moare
careful counting in the Life case has brought the size down to 1400 by 1400. However, using
completely different ideas and many hours of computer time the M.I.T. group managed to

produce an explicit example (Fig. 16).

)
0 0

Figure 16. An Orphan Found by Roger Banks, Mike Beeler, Rich Schroeppel, Steve Ward, et al.

Life’s Problems are Hard!

The questions we posed about the ultimate destiny of Life configurations may not seem very
mathematical. After all, Life’s but a game! Surely there aren’t any difficult mathematical

problems there?
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Well, ves there arel Indeed we can prove the astonishing fact that every sufficiently well-
stated mathematical problem can be reduced to a question about Life! Those apparently
trivial problems about Life histories can be arbitrarily difficult!

Here, for instance, is a tricky little problem that kept mathematicians busy from the time
Pierre de Fermat proposed it over 300 years ago until Andrew Wiles solved it in the 1990s. Is
it possible for a perfect nth power to be the sum of two smaller ones for any n larger than 27
Despite many learned investigations by many learned mathematicians we still don't know! But
if you had an infallible way to foretell the destiny of a given Life configuration, you'd be able
to answer this question!

The reason is that we can design for you a finite starting pattern Py which will fade away
completely if and only if there is a way of breaking an nth power into two smaller ones. If you
had a mechanical method which would accept as input an arbitrary finite Life pattern P, and
is guaranteed to respond with

FADE, if the rules of Life will eventually cause P to disappear completely, and
STAY  if not,

then you could apply it to Fy and settle Fermat’s question.
Even better, we could design a pattern P; which will tell you what those perfect powers
are. If
a +b" =c"

is the first solution of Fermat's problem in a certain dictionary order, then eventually P; will
lead to a configuration in which there are

a gliders, travelling North-West,
b gliders, travelling North-East,
¢ gliders, travelling South-West,
n gliders, travelling South-East,

and nothing else at alll We can do the same sort of thing for other mathematical problems.

Making a Life Computer

Many computers have been programmed to play the game of Life. We shall now return
the compliment by showing how to define Life patterns that can imitate computers. Many
remarkable consequences will follow from this idea.

pulses [T I'L 11

bits 1 1 0 1 0

s < < <

Figure 17. Gliding Pulses.
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Good old fashioned computers are made from pieces of wire along which pulses of electricity
go. Our basic idea is to mimic these by certain lines in the plane along which gliders travel
(Fig. 17). (Because gliders travel diagonally, from now on we’ll turn the plane through 45°,
so they move across, or up and down, the page.) Somewhere in the machine there is a part
called the clock which generates pulses at regular intervals and most of the working parts of
the machine are made up of logical gates, like those drawn in Fig. 18. Obviously we can use
Glider Guns as pulse generators. What should we do about the logical gates? Let’s study the
possible interactions of two gliders which crash at right angles.

> —>—
Dl i
OR AND NOT

Figure 18. The Three Logical Gates.

When Glider Meets Glider

There are lots of different ways in which two gliders can meet, because there are lots of differ-
ent possibilities for their exact arrangement and timing. Figure 19 shows them crashing (a)
to form a blinker, (b) to form a block, (¢) to form a pond, or (d) in one of several ways in
which they can annihilate themselves completely. This last may seem rather unconstructive,
but these vanishing reactions turn out to be surprisingly useful!
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Figure 19. Gliders Crashin’ in Diverse Fashion.
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How to Make a NOT Gate

Chapter 25. What is Life? &

We can use a vanishing reaction, together with a Glider Gun, to create a NOT gate (Fig.
20). The input stream enters at the left of the figure, and the Glider Gun is positioned and
timed so that every space in the input stream allows just one glider to escape from the gun,
while a glider in the stream necessarily crashes with one from the gun in a vanishing reaction
(indicated by *). Figure 20 shows the periodic stream

1 1
being complemented to

0 0

being complemented to

Input

110110110 ...

goLoolLo0l ...

-,
1_01101101_"
3 . w I N

e

-0

-0

|

0

.0

Figure 20. A Glider Gun and a Vanishing Reaction Make a NOT Gate.
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Fortunately there are several vanishing reactions with different positions and timings in
which the decay is so fast that later gliders from the same gun stream will not be affected
(Fig. 21). This means that we can reposition a glider stream arbitrarily by turning it through
sufficiently many corners (Fig. 22).

Figure 21. A Variety of Vanishing Reactions Between Crashing Gliders.

The Eater

What else can happen when glider meets glider 7 Lots of things! One of them is to make
an eater (Fig. 23) and an eater can eat lots of things without suffering any indisposition.
The eater, which was discovered by Gosper, will be very useful to us; in Fig. 24 you can see
it enjoying a varied diet of (a) a blinker, (b) a pre-beehive, (c) a lightweight spaceship, (d)
a middleweight spaceship, and (e) a glider . If it attempts a heavyweight spaceship it gets
indigestion and leaves a loaf behind; if it tries a blinker in the wrong orientation it leaves a
baker’s shop!

Sometimes glider streams are embarrassing to have around, so it's especially useful then—
it just sits there and eats up the whole stream!
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Figure 22. Repositioning and Delaying a Glider Stream.
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Figure 23. Two Gliders Crash to Form an Eater.
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Figure 25. (a) Blockbusting Glider, (b) Glider Dives into Pond and Comes Up With Ship. (c¢) Glider
Crashes into Ship and Makes Part of Glider Gun.
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Figure 26. Thirteen Gliders Build Their Own Gun.
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Gliders Can Build Their Own Guns!

What happens when a glider meets other things? We have seen it get eaten by an eater. It
can also annihilate a block (and itself! Fig. 25(a)). But more constructively it can turn a
pond into a ship (Fig. 25(b)) and a ship into a part of the glider gun (Fig. 25(c)). And since
gliders can crash to make blocks (Fig. 19(b)) and ponds (Fig. 19(c)), they can make a whole
glider gun! The 13 gliders in Fig. 26(a) do this in 67 generations. Figures 26(b,c,d) show the
positions after 8, 16 and 44 generations. The extra glider then slips in to deal with an incipient
beehive, and by 67 generations (Fig. 26(e)) the gun is in full working order and launches its
first glider 25 generations later.

The Kickback Reaction

Yet another very useful reaction between gliders is the kickback (Fig. 27(a)) in which the
decay product is a glider travelling along a line closely parallel to one of the original ones, but
in the opposite direction. We think of this glider as having been kicked back by the other one.
Figure 27(b) shows our notation for the kickback.

Figure 27. The Kickback.

All the working parts of our computer will be moving glider streams, meeting in vanishing
and kickback reactions. The only static parts will be glider guns and eaters (indicated by G
and E in the figures).

Thinning a Glider Stream

The glider streams that emerge from normal guns are so dense that they cannot interpenetrate
without interfering. If we try to build a computer using streams of this density we couldn’t
allow any two wires of this kind to cross each other, so we'd better find some way to reduce
the pulse rate.

In Fig. 28 the guns G; and (G5 produce normal glider streams in parallel but opposite
directions. But there is a glider g which will travel West until at A it is kicked East by a glider
from the (¢; stream. The timing and phasing are such that at B it will be kicked back towards
A again, so that it repeatedly “loops the loop”, removing one glider from each of the two
streams per cycle. After this every Nth glider is missing from each of these streams. We don’t
want the G stream, so we feed it into an eater, but we feed the G5 stream into a vanishing
reaction with a stream from a third gun G3. Every glider from G5 now dies, but every Nth
one from G3 escapes through a hole in the G5 stream! So the whole pattern acts as a thin
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Figure 28. Thinning a Glider Stream.

gun, producing just one Nth as many gliders as the normal gun. To get the phasing right, N
must be divisible by 4, but it can be arbitrarily large and so we can make an arbitrarily thin
stream. Now two such streams can cross without interacting as in the right hand part of Fig.
28, provided things are properly timed. So from now on we can use the word gun to mean an
arbitrarily thin gun. Perhaps a thinning factor of 1000 will make all our constructions work.

Building Blocks for Our Computer

In Fig. 29 we see how to build logical gates using only vanishing reactions (we've already seen
the NOT gate in more detail in Fig. 20). But there’s a problem! The output streams from the
AND and OR gates are parallel to the input, but the output stream from the NOT gate is at
right angles to the input. We need a way to turn streams round corners without complementing
them, or of complementing them without turning them round corners. Fortunately the solution
to our next problem automatically solves this one.

The new problem is to provide several copies of the information from a given glider stream,
and we found it a hard problem to solve. To get some clues, let's see what happens when we
use one glider to kick back a glider from a gun stream.
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Figure 29. (a) An AND Gate. (b) An OR Gate. (c) A NOT Gate.

We suppose that the gun stream, the full stream, produces a glider every 120 generations
(a quarter of the original gun density; N = 4 in the previous section). Then it turns out that
when we kick back the first glider, the effect is to remove just three gliders from the stream!
This happens as follows:

i) The first glider is kicked back (Fig. 27) along the full stream.

(
(ii)  The second glider crashes into the first, forming a block (somewhat as in Fig. 19(b)).
(iii) The third glider annihilates the block (Fig. 25(a)).

(iv)  All subsequent gliders from the full stream escape unharmed.

We can use this curious behavior as follows. Suppose that our information-carrying stream
operates at one tenth, say, of the density of the full stream, so that the last 9 of every 10 places
on it will be empty, while the first place might or might not be full. If we use 0 for a hole and
block the places in tens, our stream looks like

... 000000000 000000000C" DO0000000B 0000000004 —
We first feed it into an OR gate with a stream of type
... 000000000 0000000060 00000000g0 00000000g0 —
the g’s denoting gliders that are definitely present. The result is a stream
... 00000000g. 00000000gC" 00000000gB 00000000gA —»

in which every information-carrying place is definitely followed by a glider g. This stream is
used to kick back a full stream whose gliders are numbered:

e e X987654321 X 987654321 —
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Figure 30. Copying a Glider Stream.
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If glider A is present, it will obliterate gliders 1, 2 and 3 of the full stream and the following
glider g can escape in the confusion. But if A is absent, then full stream glider 1 escapes and
gliders 2, 3, 4 are removed instead by the following glider g. So the stream which emerges
is definitely empty except for the second of every ten places and these places carry a copy of
the input stream. The original full stream now manages to carry the information fwice, in the
first and fourth digits of each block, the first digit carrying the complemented version (which
has not been turned through a right angle). By feeding this stream into vanishing reactions
with suitably thin streams we can recover the original stream either complemented or not, and
freed from undesirable accompanying gliders! Figure 30 shows these techniques in action.

From here on it’s just an engineering problem to construct an arbitrarily large finite (and
very slow!) computer. Our engineer has been given the tools—let him finish the job! We know
that such computers can be programmed to do many things. The most important ones that
we will want it to do involve emitting sequences of gliders at precisely controlled positions and
times.

Auxiliary Storage

Of course the engineer will probably have designed an internal memory for our computer using
circulating delay lines of glider streams. Unfortunately this won't be enough for the kind of
problem we have in mind, and we’ll have to find some way of adjoining an external memory,
capable of holding arbitrarily large numbers. To build this memory, we'll need an additional
static piece (the block).

Had Fermat’s problem been still unsolved, we might ask the computer to compute

a™ + b" and "

for all quadruples (a,b,c,n) in turn and stop when it finds a quadruple for which

a™ +b" = c".
We don’t know how big a, b, ¢ and n might get, and they’ll almost certainly get too large even
to be written in the internal memory.

So we're going to adjoin some auxiliary storage registers, each of which will store an arbi-
trarily large number. Figure 31 shows the general plan. FEach register contains a block, whose
distance from the computer (on a certain scale) indicates the number it contains. In the figure,
register A contains 3, B contains 7, C' contains (0 and D contains 2. When the contents of a
register is (), the block is just inside the computer. All we have to do is to provide a way for
the computer to

increase the contents of a register by 1,
decrease  the contents of a register by 1, and
test whether the contents are 0.

Fortunately each of these can be accomplished by a suitable fleet of gliders. One such fleet
is off to increase register B by one! And another glider is about to discover that register C'
contains 0.
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Figure 31. Auxiliary Storage.

How We Move Blocks

To find these fleets we studied the six possible glider-block crashes. One of them does indeed
bring the block in a bit, but unfortunately by a knight’s move. However the block can be
brought back onto the proper diagonal by repeating the process with a reflected glider on a
parallel course. The combined effect of this pair of gliders is to pull the block back three
diagonal places (Fig. 32).

Unfortunately there is no single glider-block crash which moves the block further away,
but there is a crash which produces the arrangement of 4 beehives we call a honey farm , and
two of these four are slightly further away, and so we can send in second, third and fourth
gliders to annihilate three of the beechives, and then a fifth glider which converts the remaining
beehive back into a block. The total effect again pushes the block off the proper diagonal,
but a second team of five gliders will restore this, resulting in a block just one diagonal place
further out! (Fig. 33).
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Figure 32. Two Gliders Pull a Block Back Three Diagonal Places.

Figure 33. Ten Gliders Move a Block Just One Diagonal Place.
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We therefore choose a diagonal distance of 3 to represent a change of 1 in a register and
can decrease the contents of a register using a pair of gliders, or increase it using 3 flotillas
of 10.

Apart from the difficulty discussed in the next section we have now finished the work, for
Minsky has shown that a finite computer, equipped with memory registers like the ones in
Fig. 31, can be programmed to attack arbitrarily complicated mathematical problems.

A Little Difficulty

But now comes the problem. Every glider in our finite computer has at some time been pro-
duced by a glider gun, so how could we arrange to send those gliders along closely parallel,
but distinct paths? Surely one gun would have to fire right through another (Fig. 34)7 Our
technique of side-tracking uses three computer controlled guns G, G2, GG3 as in Fig. 35.
These are programmed to emit gliders exactly when we want them to.

Figure 34. How Can One Gun Fire Through Another?

Y=

¥

@——p«‘-——»— -

©

Figure 35. Side-tracking.
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Firstly, G emits a glider g travelling upwards,

Secondly, G5 emits a glider at just the right time to kick g back downwards,

Thirdly, G5 kicks g back up again,
and so on, alternately, until at a suitable time G fails to fire and g is released. By controlling
the number of times G5 and Gy fire, the same guns can be used to send a succession of gliders
along distinct parallel paths.

Mission Completed—Will Self-Destruct

Side-tracking can be used for a much more spectacular juggling act! We can actually program
our computer to throw a glider into the air and bring it back down again. In Fig. 36, G,
Gy, Gy behave as before and can be programmed to arrange that a glider g ends up travelling
Eastwards arbitrarily far above the ground. But (4 has been arranged to emit a glider which
will be kicked back down by g. We could even arrange to kick it back up again, then down
again, then up again,...as suggested by the dotted lines in Fig. 36.

e —

@

© &

Figure 36. Double Side-tracking.

Using such techniques we can design a program for our computer which will send large
numbers of gliders far out into space and then turn them round so that they head back
towards the computer along precisely defined tracks (Fig. 37).

Now comes the clever part. Figures 38(a), 38(b) and 25(a) show that the eaters, the guns’
moving parts, and blocks, can all be destroyed by aiming suitably positioned gliders from
behind their backs. If the computer is cleverly designhed we can even destroy it completely by
an appropriate configuration of gliders!

Here’s the idea. We design the computer so that every glider emitted by a gun or circulating
in a loop would, if not deflected by meeting other gliders, be eventually consumed by an appro-
priately placed eater. Then we design our attacking force of gliders to shoot the computer
down, guns first. After each gun is destroyed we wait until any gliders it has already emitted
have percolated through the system and either been destroyed by other gliders, or swallowed
by eaters, before attacking the next gun. When all the guns are destroyed we shoot down the
eaters and blocks.
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Figure 38. (a) The Eater Eaten! (b) The Gun Gunned Down!

The whole process requires some care. Each gun ; must have a matching eater F;, and
G; and E; lie in a strip of the plane which contains no other static parts of the computer
(Fig. 39). The gliders g1, g2, ga,. . . with which we shoot down a given gun can be arbitrarily
widely spaced in time provided they come in along the right tracks. Moreover we can arrange
to shoot down the successive guns, eaters and blocks after increasingly long intervals of time.
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Figure 39. Arranging Destroyable Guns.

However, it ean be done! We intend to use it like this. Program the computer to look for
a solution of an arbitrarily hard problem, such as Fermat’s. If it never finds a solution it will
just go on forever. However, if it does find a solution we instruct it to throw into the air a
precisely arranged army of gliders, then reduce all its storage numbers to zero (this brings all
the blocks inside the computer), switch off, and await its fate. The attacking glider army, of
course, is exactly what’s needed to obliterate the computer, leaving no trace. It’s important to
realize that a fized computer can be programmed to produce many different patterns of gliders
and in particular the one required to kill itself. The information about this glider pattern can
be held by the numbers in the memory of the computer and not in the computer’s design.

Since mathematical logicians have proved that there’s no technique which guarantees to tell
when arbitrary arithmetical problems have solutions, there's no technique that’s guaranteed
to tell even when a Life configuration will fade away completely. The kind of computer we
have simulated is technically known as a universal machine because it can be programmed to
perform any desired calculation. We can summarize our result in this answer to our chapter
heading:

LIFE IS UNIVERSAL!




Extras

Life is Still Being Lived!

The game of life is very much alive on the Internet, where a search will soon reveal many
web pages devoted to it, which have found many new things. We shall only mention Dean
Hickerson’s page: http://www.math.ucdavis.edu /dean/life.html and Mark Niemiec’s extended
counts of still-lifes (i.e., stable objects) and flip-flops (i.e., period 2 oscillators):

size still-lifes pseudo still-lifes  flip-flops  pseudo flip-flops

3 0 0 1 0
4 2 0 0 0
9 1 0 0 0
6 5 0 3 0
7 4 0 0 0
3 9 1 1 0
9 10 1 1 0
10 25 7 1 1
11 46 16 1 2
12 121 95 6 14
13 240 110 3 17
14 619 279 20 46
15 1353 620 29 78
16 3286 1645 98 225
17 7773 4067 199 484
18 19044 10843

19 45759 27250

20 112243 70637

21 273188 179011

22 672172 462086

23 1646147 1184882

Life Computers Can Reproduce!

Eaters and guns can be made by crashing suitable fleets of gliders, so it’s possible to build a
computer simply by crashing some enormously large initial pattern of gliders. Moreover, we
can design a computer whose sole aim in Life is to throw just such a pattern of gliders into
the air. In this way one computer can give birth to another, which can, if we like, be an exact
copy of the first. Alternatively, we could arrange that the first computer eliminates itself after
giving birth; then we would regard the second as a reincarnation of the first.

958
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There are Life patterns which behave
like self-replicating animals.

There are Life patterns which move
steadily in any desired rational
direction, recovering their initial
form exactly after some fixed
number of generations.

Genetic Engineering

We've now shown that among finite Life patterns there is a very small proportion behaving like
self-replicating animals. Moreover, it is presumably possible to design such patterns which will
survive inside the typical Life environment (a sort of primordial broth made of blocks, blinkers,
gliders, ... ). It might for instance do this by shooting out masses of gliders to detect nearby
objects and then take appropriate action to eliminate them. So one of these “animals” could
be more or less adjusted to its environment than another. If both were self-replicating and
shared a common territory, presumably more copies of the better adapted one would survive
and replicate.

Whither Life?

From here on is a familiar story. Inside any sufficiently large random broth, we expect, just
by chance, that there will be some of these self-replicating creatures! Any particularly well
adapted ones will gradually come to populate their territory. Sometimes one of the creatures
will be accidentally modified by some unusual object which it was not programmed to avoid.
Most of these modifications, or mutations, are likely to be harmful and will adversely affect
the animal’s chances of survival, but very occasionally, there will be some beneficial mutations.
In these cases the modified animals will slowly come to predominate in their territory, and so
on. There seems to be no limit to this process of evolution.

It's probable, given a large enough
Life space, initially in a random state,
that after a long time, intelligent
self-reproducing animals will emerge and
populate some parts of the space.

This is more than mere speculation, since the earlier parts are based on precisely proved
theorems. Of course, “sufficiently large” means very large indeed, and we can't prove that
“living” animals of any kind are likely to emerge in any Life space we can construct in practice.
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It’s remarkable how such a simple system of genetic rules can lead to such far-reaching
results. It may be argued that the small configurations so far locked at correspond roughly to
the molecular level in the real world. If a two-state cellular automaton can produce such varied
and esoteric phenomena from these simple laws, how much more so in our own universe?

Analogies with real life processes are impossible to resist. If a primordial broth of amino-
acids is large enough, and there is sufficient time, self-replicating moving automata may result
from transition rules built into the structure of matter and the laws of nature. There is even the
very remote possibility that space-time itself is granular, composed of discrete units, and that
the universe, as Edward Fredkin of M.I.T. and others have suggested, is a cellular automaton
run by an enormous computer. If so, what we call motion may be only simulated motion. A
moving particle in the ultimate microlevel may be essentially the same as one of our gliders,
appearing to move on the macrolevel, whereas actually there is only an alteration of states of
basic space-time cells in obedience to transition rules that have yet to be discovered.
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Glossary

A = ace = {0]tiny}, 357

A = —ace = {miny |0}, 359

A— = {on|A||0}, 359

A+ = {0||A|off}, 359

No, aleph-zero, 329

A, also, slow join, 286

M, and, join, 278

[ ], “ceiling,” least integer not less than, 485

(z)n, {z| — y}n, Childish Hackenbush values,
238

a < b >, class a and variety b, 363

1& ={&|0}, clubs, 359

=0&= {1& | 0}, clubs, 359

1 & = {deuce| 0}, clubs, 359

o ® O @ . Col and Snort positions, 47, 146

~°, degree of loopiness, 361

2& = {0|ace} = ace + ace = deuce, 357

1$ = {J|0}, diamonds, 359

& =0< = {ace|1<{}, diamonds, 359

1 = {0/¢}, diamonds, 359

I={l #|0} =1 + |, double-down, 68, 69, T1

1= {0| T x} =1 + T, double-up, 68, 69, 71

f+ = {0| T} =t + T +=, double-up star, 71

1= {x|0}, down, 64

lo= {1 |0}, down-second, 235, 236

Ja= {1+ 1% + *|0}, down-third, 235, 236

Labe -+ Labe » .., 261

b, downsum, 336, 357
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dud = {dud|dud}, deathless universal draw,
337

e = 2.7182818284 . . ., base of natural logarithms,
610

€, epsilon, small positive number , 328

¢ —over, 674, 675, 688, 689, 691702

=, equally uppity, 242, 247, 249

| |, “floor,” greatest integer not greater than,
51, 311, 485

|10, fuzzy, 29, 32, 37

G, general game, 28-31

G || 0, G tuzzy 2nd player wins, 29

G < 0,G negative, R wins, 29

G > 0, G positive, L wins, 29

G = 0,G zero, 1st player wins, 29

G + H, sum of games, 31

G*, (set of) L option(s), 31

G, (set of) R option(s), 31

G(n) nim-value, 82

G.t={G". 1T+ f » |
255, 258

>, greater then, 32

= greater than or equal, 32

k> , greater than or incomparable, 32, 35

>, at least as uppity, 242, 246

1 ={0|1}, half, 7, 20

19 = {V|0}, hearts, 359
Q=00 = {1V|A}, hearts, 359
1% = {0| joker}, hearts, 359

G™. 1 + | %}, 247,
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hi = {on||0|off}, 355
hot = {on|off}, 355, 710
||, incomparable, 35

0o = Z||Z|Z, 329, 334, 391
+o00 = oo| — 00 = Z|Z = [“*, 334
oo + 0o = oo|0 = Z|0, 334
oo+oo=2.00=2||Z

£]0, double infinity, 334
00g. 502, unrestricted tallies, 314
Oabe..., 387-395
003~5..., 333
J, integral, 167180
J = {0|]A+} = ace )\(—ace) = joker, 358
J = {A — |0} = ace {/(—ace) = —joker, 359
L, Left, 2
LnL,LnR, RnR, positions in Seating games,
44, 45, 132, 133, 260
<, less than, 32
< less than or equal, 32
<l, less than or incomparable, 32, 35
lo = {on|0 || off}, 355
P, loony, 397, 407
7" ", v, loopy games, 335
s&t loopy games, 336
—1 ={ |0}, minus one, 19
—on = {on|0 || 0}, miny, 353
-1 = {10 || 0}, miny-a-quarter, 134
—: = {z|0 || 0}, miny-x, 126
¥ nim-product, 475-477
>':I— nim-sum, H8
off = { |off}, 336-340, 357, 674, T10
w=1{0,1,2,...| }. 329-333
w+1={w| }, omega plus one, 329-333
wx2={w,w+l,w+2,...| } =wtw, 320-333
Po{wwx2,wx3,. .| }=wxw, 320-333
on = {on| }, 336-341
1={0] } one 7,19
1/on = over, 341, 673, 674, 686
1 over, 674, 677, 681, 686
ono = {on|0}, 355-356
oof = {0|off }, 355-357
over = {0|0ver} = gl-l;, 341, 674, 688, 696-69H
7 = 3.141592653 . . ., pi, 328-329, 610
+1 ={1| — 1}, plus-or-minus-one, 120-122
= {1Tr|v }, 247
U = {v %10} = 4. |, quadruple-down, 347

Mr= 4. 1, quadruple-up, 71, 347, 693, 706

Glossary &

% = {0|3}, guarter, 6, 20

% i T: {fr *[13. | +*}, quarter-up, 236

% = 1.7 4% = {1 |13. 1}, quarter-up-star,
236

R, Right, 2

£ = {*,1| | *,0}, semi-star, 370

é L - T= {1 #| | #}, semi-up, 236, 247

é = é T +% = {f| |}, semi-up-star, 236

% - 1% 1= {*|*}, sesqui-up, 236

si

ls

:0":1

n(), 348-350
s - - - slash, slashes, ... separate L and R
options, 6-7, 128-129, 366

24 = {A|0}, spades, 359

1# = {024}, spades, 359

h=0d= {0|i‘}, spades, 359

1& = 0|dh, spades, 359

ﬁ , far star, remote star, 230-232, 244-251

* = {0|0}, star, 38
*2 = {0, %[0, x}, star-two, 41
wn = {0,x,...,x(n—1)|0,%,...,
n, 41
xqv, star-alpha, 333
% =, 7= {1t %| | x}, starfold-up, 236, 248
#71, all nimbers except *n, 397
#n —r ., all nimbers from *n onwards, 397
® = 0% —, sunny, 397401, 404
Tabe..= — }**“, superstars, 261
2,3y, tallies, 300-326
% = {%|1} three-quarters, 17
+on = {0|oof } = {0||0]off } = tiny, 353, 357
+i= {010 - %1}, tiny-a-quarter, 126
+5 ={0]| 0| — 2}, tiny-two, 126
+. = {0 0| — z}, tiny-z, 126
tis = {tisn| } = 1&0, 342, 374
tisn = { [tis} = 0& — 1, 342, 374
(L,7)(l,r)., Toads-and-Frogs positions, 127, 136,
368, 375, 376

= {{ #|0} = 3. |, treble-down, 71, 347
1= {0| r #} = 3. 1, treble-up, 71, 347, 693
3= {O|deuce} = trey = ace + deuce, 357
A, triangular number, 253

*(n—1)}, star-

U, ugglies, ugly product, 483-487
2=4{1| },two, 7,19

under = {under|0} = —over, 341
W,union, or, 300
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1= {0|*}, up, 64, 71, 261 uponx* = {0, upon = |0}, 341

19, up-alpha, 341 I, upsum, 336, 357

2= {0] | #}, up-second, 235, 236 w7, ur, urgent number, 312

1% = {0, %|0}, up-star, 65, 229 [a|blc]| .. .]x, Welter function, 506-514

3= {0| | + |2 +#}, up-third, 235, 236 Z=4{..,-2,-1,0,1,2,...}, the set of inte-
Tabe..., 261 gers, 334

upon = {upon/|*}, 341, 375 0={ | }=0«=0.7, zero, 7, 41
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abacus positions, 512-515
Abacus strategy, 513, 514
abnormal move, 325
absorbancy, downsum, 360
Abt, Clark C., 959
accounts-payable, 127, 826, 827, 838
ace, 357
acrostic
games, 482, 485, 487
Mock Turtle Fives,, 487
product, 482, 483, 486
Turnips, 483
Twins, 487, 473, 474
action, in hottest game, 167
active postion, 149, 150
acute triangles, 254
Adams, Clifford W., 892, 919
Adams, E. W., 117
Adam’s Magic Hexagon, 892, 919
Adders = 73, 429, 444
Adders-and-Ladders, 386
addition
misere, 419
of Checkers, Chess, Domineering, Go, 757
of games, 30-33
of loony games, 399
of loopy games, 390
of switches, 120
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nim-, H8. 59, 73, 74, 90, 109, 110, 116, 199,
246, 390, 418, 473, 475, 476, 497, 498, 504,
507, 508,510, 556, K58, 605, 606, 752, 860,
886
ordinal, 219, 220
to switches, 122
two kinds, 191
Additional Subtraction Games, 395
additives of no atomic weight, 225
adjacency matrix, 222
age
moon's, 907
Air on a G-string, 96
ajar, 408-410
Akin, E., 766
Albert, M., 690, 757, 763
Algorithm
Secondoft, 535, 537
Zeckendorf, 535
Alice in Wonderland, 1-3 56, 57, 229, 461-463—
473
all small games, 229, 230, 757
All Square, 405
All the King's Horses, 277-283, 286-289, 292—
293
Allemang, Dean Thomas, 454
Allen, J. D., 764
Allis, L. V., 740, 764, 766, 767
almonds, 379, 393
also-ran, 286
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alternating group, 867
alternating moves, 46, 47
Althéfer, I., 86, 117
altitude, 31, 693, 687689, 692, 694, 702, 703,
705
altitude decrement, 700, 701, 703
exceptional, 704
amazing jungle, 208, 221
Amazons, 15, 16, 756, 757, 761, 762
ambient temperature, 164, 168, 188
ambitious distraction, 483
ambivalent Nim-heaps, 426
Amendment, tactical, 697
American colonies, 905
anatomy of Toads-and-Frogs, 63
AND gate, 941, 948
Anderson, William N., 767
Andersson, Goran, 119
Andreas, J.M., 891
Andrews, W.S., 923
angel, 643, 665
anger, fit of, 317
Animal Farm, 146, 812
animals
dead, 135
Grundy's wild 431
tame, 425-430
tracking, 202-210, 221-222
annihilation games, 224
Anshelvich, Vadim V., 744, 767
Anthony, Piers, 607
Antipathetic Nim, 493-496 499
Antonim, 493496, 499
Applegate, David, 602, 607
Arbib, Michael A., 959
Archangel, 9, 30, 1916
Argument, Poker-Nim, 55, 56
Argument, Snakes-in-the-Grass, 191
Argument, Tweedledum and Tweedledee, 2, 3,
35, 72, 349-350
Arithmetico-Geometric Puzzle, 847, 848, 913-
915
arithmetic periodicity, 99, 113-117, 144, 187,
752
army, 95, 821-823, 835
arrays
Nimstring, 581
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arrows, 901, 741, 835, 849, 854
Ars Amatoria, 736, 769
Artful Arrow, 850, 854
Arthur, 541, 542, 545, 551, 554, 569, 574, 5
assets, 824, 825
asymmetrical heating, 173
atom, 229
atomic weight = uppitiness, 200-202, 204, 206,
208-209, 211, 220-222, 225, 230-232, 234,
236-240, 242-244, 246, 248, 251, 253, 256,
258, 259, 261
calculus, 231, 232, 234, 237, 239, 242, 247,
249, 256, 259
of lollipops, 238
of nimbers and of up, 232
atomic weight, 690, 757
eccentric, 231, 232, 237, 251
fractional, 234, 236
high, 706
hot, 706
properties of, 236
rules, 242,
atoms
Lucasta, h88-594
superheavy, 333
Austin, A K., 923
Austin, Richard Bruce, xiv, xviii, 52, 96, 109,
117, 538
average versus value, 10
averages, playing the, 167, 173
Ayo, 761
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Babbage, Charles, 767
baby-sitting, 413
Bach, Clive 369
back-handed compliment, 405
backbone, 700, 702, 704
sequence, 700, 701, 704
values, 700, 701
backfield, 681, 695, 700, 710
Backgammon, 14
Backsliding Toads-and-Frogs, 367, 375-376
backwards
playing, 817
thinking, 384
bad child, 430
bad move, 16, 547, 818
Baduk (see Go)
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Baiocchi, Claudio, 533
Baked Alaska, 321, 323
baker, bakery, 936
balance, 381, 824, 896
sheet, 823
ball, 96, 752
Ball, W.W. Rouse, 117, 538, 895, 923
Ball and Chain, 850
Balsdon, J.P.V.D., 767
Banks, E. Roger, 939, 959
bargain, 159
barge, 929
Barmy Braid, 853
Baseball, 15
Basketball, 15
Battle, xvii(2)
hattle, 3
hot, 145, 299-307, 310, 322, 326
Nim-like, 230
Battleships, 15
beacon, 930
bead = bivalent node, 562
Beal, D. F., 764, 765
Beasley, John D., 18, 640, 805-807, 837840
Beasley's Exit Theorems, 829, 830, 837, 838
bed, redwood, 211, 213-217, 222
bee, queen, 937
beetle, 600
behavior for Princes, 537
beehive, 929, 934, 935, 943, 953
Beeler, Michael, 939
Belginm, 894
Bell, A. G., 767
Bell, Robert Charles, 666, 668, 710, 737, 767
Belladonna, 528
Benson, David B., 764
Benson, David J., 871, 875, 876
Benson, E. C., 117
Bentz, Hans J., 766
Berge, Claude, 78
Berghold, Ernest, 805, 806, 837, 839, 840
Berlekamp, Elwyn, 16, 18, 77, 78, 123, 144,
187, 188, 224, 225 318, 538, 578, 584,
607, 693, 710, 756, 757, T62-764
Berlekamp's Rule, 77, 78
Bertha, 541-545, 547, 551, 554, 555, 569, 574
Bessy, Frenicle de, 886
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Bicknell-Johnson, Marjorie, 79
Biclock, 937
big firms, 423
big game, 65, 75, 202, 206, 222, 417
Biloaf, 937
binary (base 2), 73, 99, 481,940
tree, 23
bipartite graphs, 217, 224, 583
birth, 927
control, 929
birthday, 318, 417, 771, 903, 962
bit = binary digit, 99, 940
Bjgrne, Anders, 766
Bjornsson, Y., 764
Black, Farmer, 145, 146
Black, Larry, 746
Black Path Game, 746, 747
black heap, 532
black stones = blocking stones, 642
blanker, 929
Blass, Andreas, 643, 748
Blass, U., 78
blatantly loopy, 391
blatantly winning ways, 410
Blinker, 928, 929, 935, 937, 943
block, 941, 947, 948, 951, 952, 955-957
puzzles, 843-848, 864, 87T-885, 892898,
910-915, 919-922
Blockbusting, 187
blocking stones, 642-664
Blocks-in-a-Box, 844, 910
blossom, 198, 199, 240
bLue edge, 2, 198, 230, 237
Blue Flower Ploy, 199, 201, 240, 242
Blue Jungle Ploy, 201, 210
bLue tinted nodes, 48, 204
Blue-Red Hackenbush, 1-6, 15-17, 20, 22, 23,
27-33, 35-38, 43, 77, 78, 179, 200, 211-
217, 224
Blue-Red-Green Hackenbush, see Hackenbush
Hotchpotch
Board
Continental, 817, 835
English, 803
board
games, 641-842
sizes, 642, 649, 654, 657, 663, 664
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boards, F&G, 686
Boardman, Mike, 818
boardwidth
large, 710
boat, 929, 935, 936
Bodlaender, H. L., 117, 225
body, 502, 503, 609, 741, 807, 900
bogus Nim-heap, 57-58,
bomb, time, 937
Bond, James = 007, 94
Bono, Edward de, 384, 408, 412
bonus move, 405
booby prize, 533
bottle, 218, 225
boundary
left, 154-156, 158, 164, 169
right, 154-156, 164, 169, 170
booby prize, 533
Bounded Nim, 517, 518
Bouton, Charles L., 42, 52, 78, 452
Bouwkamp, C.J., 923
box, 488, 501, 541545, 547551, 554556, 558,
561, 564, 566, 569, 571, 572, 575, 5T7-579,
592, 844, 845, 896
Boxing, 488
Boxing Day, 903, 905
Boy Leaves Girl, 856
boys by billions, 547
braiding paper, 853
branch, 22, 34, 191, 555, 564, 588 500, 592,
594, 606
Brandt, J., T66
brazils, 393
breakthrough, 188
Breuker, D. M., 144
Bridge, 17
bridge, 189, 194-196, 685687, 693-695, 866,
916
Bridgit, 744-746
Britain, 905
Broline, D., 766
Broussean, Bro. Alfred, 923
Brouwer, Andreas E., 740, 768
Brown, B.H., 923
Brown, T.A., 923
Browne, Cameron, 744, 767
Browne, Patrick, xvi

Index

Brualdi, Richard A., 767

Bruckner, Gottfried, 767

Bruijn N.G. de, 492, 840

Brussels Sprouts, 603, 607

Buckingham, David, 936

Bugs, 597

Bulgarian Solitaire, 761

bulls 145, 146

bullseye, 681-684

Bumble-bee Problems, 827

Bundy, A., 765

Buro, Michael, 762, 765

Bumby, Margaret, 875

Bushenhack, 604, 606, 607

Busschop, Chevalier Paul, 840

Biivos Kocka, 868-876, 917-918

Bynum's Game = Eatcake, 136, 234, 289

Bynum, James, 136, 234, 289

bypassing reversible options, 60, 62-64, 66, 70,
71, 75, 77

Byrom, John, 53

Byron, Henry James, 81

CABS, 388-393
cabs, 364-366
Cabbages, 597
Caesar, Julius, 585
cage, 709
Caines, Ian 117
cake, 26, 51, 196, 220, 221, 284 288, 280 202,
294-297, 299-303, 308-310, 321-323
Calculus, Atomic Weight, 231, 232, 234, 237,
9239, 242, 247, 249, 256, 259

calendar

Gregorian, 905-909

Julian, 904-909
Calistrate, Dan, 188
candelabra, 936
Cannings, C., 766
canonical form for numbers, 22
Canterbury puzzle, 767
capturable coin, 555, 556, 558
capture, custodian, 666
captures, 665, 710
Cardano, Girolamo, 923
card sharp, 16
cards, shuffling, 14
Cards, House of, 357-361
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carousal, 369, 380, 382 Charming Charles, 525, 526
Carpenter, 461, 462 Charosh, M., 840
Carpets, 478 480 Chas., 641-643, 663, 664, 767, 923, 924
Fitted, 479 Chas. Scribner’s Sons, 539
carpet, Greatly-Valued, 480 Checkers = Draughts, 18, 224, 226, 227, 757,
Carroll, Lewis, 229 763
(Clarteblanche, Filet de, 525, 538, 923 Hawaiian = Konane, 690, 759, 760, 765
cash flow, 126 cheque-market exchange, 158, 159
cashews, 393 Cherries, 757, 763
Cashing Cheques, 122-124, 145, 158, 159, 240 Cheshire Cat, 936
Catherine Wheel, 932 Chess, 14, 18, 224, 226, 667, 755, 757, 763
Cat, Cheshire, 936 complete analysis, 755
catalyst, 807-809, 812 813 Dawson’s 89-92, 101, 109
caterpillar, 502, 503, 597 Japanese (See Shogi)
ceiling, 51, 485 problems, 658
Celoni, James R. 226 Chessgo, 641, 643
central formation, 695 chesspersons, 88, 641-643, 667, 710
central Solitaire, 804-807, 809 child
central Soma piece, 847 bad 430
centralizing switches, 123 good 427
centred King, 657, 658 Childish Hackenbush, 43, 52, 157
Century Puzzle, 877-878, 881-885, 919 Childish Hackenbush Hotchpotch, 236-238
Century-and-a-Half, 877-878, 881, 885, 919 childish lollipops, 237-240
Cervantes’s deathday, 906 childish picture, 43
cgsuite, 687, 690, 702, 703, 705 children’s party, 132, 170
chain China 16
, ball and, 851 Chinese Nim = Wythofl's Game, 427
green, 40 Chinese Rings, 856-861
long, 543, 545-547, 549, 550, 552-556, 561, chilling, 758, 764
563, 564, 569, 574, 575, 577-579, 829 chocolate bar, 632, 635
Lucasta, 588-590, 594 Chomp, 632, 635
short, 547, 574 chopped, 675
snapping, 564,565, 567 chopping, 564, 604
Snort, 147, 149-151, 153, 156-158, 161, 167, Christmas, 902, 908
168, 177, 180-183 Chviétal, Vasek, 737
chain of boxes, 542-547, 549-550, 552-555, 561 Chytie, M. P., 227
chair circle, 682-684, 691
redwood, 211 double, 691
swivel, 349 higher, 691
chalk-and-blackboard game, 1 isolated, 684
chance moves, 14 lower, 691
Chandra, Ashok, K., 224, 227 single, 691
Chang, Alice, 765 circled F&G position, 705, 681-685, 687, 694,
change of heart, xvii(2) 696
change, phase, 167, 168 circled FOXTAC values, F&G, 691
charge, electric, 253, 254 circumscribed games, 470

Charming Antipodean Beauty Spot, 391 class and variety, 362-363
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class, outcome 28, 84

classes, Riess's Solitaire, 816
Claus = Lucas, 862

clean and dirty fuses, 936
Clef, Double Treble, 848, 850
climbing bars, 211

clique, 613-615 635

comparing games, 35, 36, 122, 348
compendium, 109, 387

complementary position, 816

complementing effect, 405

complete, exptime, 763

complete graphs, 583

complete, NP, 224, 227

Clique Technique, 613, 615 complete, PSPACE, 224, 227, 760

Clobber, 690, 757, 758, 761, 763 completing a box = complimenting more, 541
clock, 669 complete in exponential time, 224

closed, 408-410 complete in Pspace, 224

cloud, 31, 36, 121, 149, 150 complete information, 14

clubs, 359, xxi(3) complicated value, 707, 708

coalition, 15, 534 complimenting move, 379, 405-407, 541, 552
cockroach, 600 component, 20, 22, 31, 32, 35, 278, 281, 286,
Cocoons, 597 288289, 299-302, 307, 312, 325326, 396

Codd, E.F., 959 308, 415
code digits, 92, 93, 101, 103-105, 107, 108, 113, cold, 299, 300
117 hot, 299, 300
code loopy, 410
genetic, 605, 606 tepid, 327
Gray, 858-861 compound

of behavior, 537
coin sequence game, 635
coin-sliding, 539 disjunctive, 289
coin-sliding games, 539, 764 impartial, 396
Coinage selective, 299, 300
Sylver, 15, 539, 609-631, 635640
coins, 123-124, 464, 466, 467, 469, 470, 472,
473, 476-478, 481483, 486488, 491494,
496, 499, 506-508, 516, 529, 550-552, H54-

conjunctive, 278, 284, 286
continued conjunctive, 286

severed selective, 312

shortened selective, 312

subselective, 396, 533
compound game, 31, 299

556, 609, 610, 617, 711, 863, 916, 923
colored, 532
Col, 37-39, 47-51, 67, 68, 75, 145, 224, 502
cold game, 299-300, 307, 316, 317
cold position, 301, 304-306, 322
cold war, 299-302, 304, 306, 307
cold work, 316
Coldcakes, 300
colon notation, 243, 244
Colon Principle 191, 193, 194, 220, 355
coloring, 38, 145, 147, 187
Commandment,
Lukewarmth, 307, 310
Markworthy, 317
common coset, 110
common values, 110

compound thermograph, 164
computable function, 630

computing power, 163

confused, 31, 68-71,

confusion interval, 121, 149-151, 158, 163
congruence modulo 16, 507
conjecture, 112, 537, 620

conjunctive compound, 278, 286
Connect-Four, 764

Connell, Ian G., 78

Continental board, 817, 835
continued conjunctive compound, 286
Contours, 587, 588

contract, 126

control, 544-546, 574, 575
convention, normal play, 14
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Conway, Elena, 876
Conway, J.H, 18, 22, 52, 78, 117, 123, 144, 188,
2925, 262, 208, 377, 446, 454, 489, 539, 598,
668, 752, 847
Cook, Stephen A., 224, 225
Coolcakes, 308, 309, 321
cooling, 151, 152, 154, 167, 179, 231, 690
formula, 151
Copper, Mark, 607
coprime, 404
Corderman, Charles L., 937
Corinthians I, 13.12, 69
cork-screw, left-handed, 379
corner, 437, 654663, 822 823, 829830
defence, 654-657
tactics, 654, 661
cornered King, 658-661
Corners, Turning, 473-475, 478
cosets, common, 110
costs, 161
counters, heaps of, 41
Couples, Seating, 44, 45, 132, 133
coupons
stack of, 693
cousin, 101, 103105, 107, 109, 114, 116
coverlet, 223
Cowley, Abraham, 119
cows, 145147
Coxeter, Harold Scott Macmillan, 78, 117, 538,
539, 023
Cram = Impartial Domineering, 141, 143, 298,
502-506
cricket, 15
criminal, minimal, 194, 214
critical position, 687, 690
critical rank, 710
critical temperature, 167, 168, 171
Cross, Donald C., 840
cross, h82, 585, 603, 607
Crosscram = Domineering, 119, 298
crosses, tendrilled, 582
Csirmaz, Laszlo, 767
cube
Hungarian, 768-776, 817-818
magic, 7T68-776, 817-818
Rubik, 768-776, 817-818
Culberson, J., 766
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cul-de-sac, 832
Curtis, Robert Turner, 468, 469
custodian capture, 666
Cutcake, 25, 26, 31, 32
Hickerson’s, 51
Cutcakes, 284-285, 292-294, 300
cutting, 284, 292
cycles, 192-194, 213-214, 316, 551, 930-932
Cyclotome, Alan Schoen’s 898-899

D.AR., 361
Dad’s Puzzler, 877-879, 885
D’Alarcao, Hugo, 607
D.U.D.EN.EY, 521, 523
Dam#f, J. E., 225
daggered position, 677, 710
danger, 670
dark positions, 677
darkening, 684, 694, 686
darkening move, 677, 678, 685
date, 395, 410
Davies, D.W., 767
Davis, Harry O., 839, 840
Davis, Morton, 766
Dawson’s Chess = -137, 89-92, 101, 109
Dawson’s Kayles = -07, 15, 90, 93, 95, 101,
109, 261, 438, 444

Dawson’s vine, 566, 569, 576
Dawson, Thomas Rayner, 89, 117, 923
De Parville, 924
dead animals, 135
dead cell, 927
Deader Dodo Problems, 827
deadly dodge, 548
death, 927
deathday, 905
Death Leap principle, 127-130, 135
deceptive defence, 548
decomposing, 568, 569
decrement

altitude, 700, 701, 703
decremented index, 705
deficient Soma piece, 847
deficit

accounting, 827

Rule, 826, 831
Definite F&G boards, 674, 685-686
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degree disassociation, thermal, 168
cooling by one, 179 distributive law, 475, 483
of loopiness, 361 Dividing Rulers, 436-437, 469
of upon, 375 do or die donation, 548
Delannoy, Henri-Auguste, 916, 923 dodecahedra, quintominal, 923
deleting dominated opinions, 62, 63, 75, 77 Dodgem, 749-751
delphinium 47, 199, 242, 695 Dodgerydoo, 751
lush, 675, 677, 681, 684 Dodie Parr = odd parity, 545-550, 558, 569,
trimmed, 686 570, 572, 575, H78-H80
Welton's, 695 Dodo Problems, 827
Delta, 697 dodos, 820
Region, 697 dog with leftward leanings, 4
Demaine, Erik D., 755, 763, 767 dogmatism, 377
Demaine, Martin L., 755, 763, 767 dogs, 711
Denim, 534 Dollar Game, Silver, 491, 492, 535
deriders of zero, 483 dominated option, 62, 63, 75, 77, 126, 149
Descartes, Blanche, 96, 97, 117 Domineering = Crosscram, 119-122, 125, 138—
desert, 821, 822 142, 153, 177, 178, 298, 366, 690, 757
deuce, 357 Domineering, Impartial = Cram, 141, 143, 144,
devastating U-turns, 754 298, 502-506
devil Dominoes, 119
square-eating, 643 Domoryad, A.P., 923
devil's label, 195 Donkey Puzzle, 877, 878, 880, 881, 885
dexterity, 910, 913 Don’t-Break-It-Up Theorem, 213, 214, 216
diamonds, 359 Doomsday Rule, 903-906, 923
dice Doors, 478, 481, 482
octahedral, 891 Dots-and-Boxes, 15, 95, 225, 539, 897
paradoxical, 886 dots+doublecrosses=turns, 546, 571
dictionary Double Circle, 691
Col, 48-51 Double Duplicate Nim, 114
Cram, 502-506 Double Hackenbush, 343
Domineering, 120, 138-142 double infinity, 334
Nimstring, 559, 560, 565, 581-583 Double Kayles, 99
Snort, 147, 180-183 Double Treble Clef, 848, 850
Difference Rule, 74, 404 double-cross, 541, 543, 544, 571
digits double-dealing, 542-544
binary, 99, 940 double-down, |}, 68, 69, 71
code, 92, 93, 98-106, 113, 117 double-six, 405
Dim, 98, 442 double-up, 1, 68, 69, 71, 242
with Tails, 404 doubling, 620
disarray, 95 of nim-values, 93, 98
discount, 161 down |, 68, 151
disentailing, 401 downon*, 708
disguise, 95, 462, 586, 733 down-second, 236
disincentive, 148 downsum, 336, 355, 357, 360
disjunctive compound, 278, 289 Draughts=Checkers, 18, 224, 226, 227, 757,

dissection, 128, 129, 134 763
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draw # tie, 14 Eggleton, Roger Benjamin, 522

drawn, 14, 335 Eight-in-a-row, 740

dud = deathless universal draw, 337-338, 353 El Acertijo, 756

Dress, Andreas, 117 electric charge, 251, 253, 254

Dudeney, Henry Ernest, 82, 117, 521, 539, 767, Eliot, Thomas Stearns, 461, 534
805, 807, 825, 840, 923 Elizabeth, Queen, 905

Duffus, Dwight, 312 Elkies, Norm, xiii, xvii, 757, 763

Dufty, Adam, 758 Emperor Nu, 609, 610

duke, 641 642, 644—646, 7T empty numbers‘ 471

Dukego, 644-646 empty set, 82, 399

Duncan, Anne, 732 encirclement, games of, 641-729

Duplicate Kayles, 99, 444 end, 562

Duplicate Nim, 114, 116 quiet, 609, 617-620, 629

duplication of nim-values, 94, 98, 99, 114, 1186, ender. 329. 330. 353. 610
444-445 end-position, 616, 617

Durer, Albecht, 888 Endgame, 416

Duvdevani, N., 79 endgames

Dyen, Louis, 713 Go. 187

loony, 577, 579
ending condition, 14, 35, 46, 47, 329
England, 905
English Solitaire board, 710, 803
enlarged flow, 204, 311
Enough Rope Principle, 16, 547, 736
entailing, 379, 396-405
Epp, Robert J., 539

Eagle, Edwin, 768

early F&G values, 689

early sequence, 688, 689

early values, 700

early-stage, 689

earwig, 600

Easter, 905

Eatcake = Bynum's Game, 233, 234, 235, 292 - ’ ;
Eatcakes, 286, 289-291, 285297, 308 Eppstein, David, 755, 767

Eater, 930, 943, 944 Epstein, Richard A., 518, 668
eating, 289—292} 643, 930, 943, 944 Epstein’s Game, 518-520, 535, 536

eccentric cases of atomic weights, 231, 232, equally favo.rable, ‘35 .
237, 23(}, 2_19, 251 equa“y upplt.y, 242, 245

economy, underlying, 151 equitable, 157-161, 169-172

Eddins, Susan, 607 equivalences
Eden, Garden of, 938 Nimstring, 565
edge Twopins, 503, 567, 568
attack, 646, 650 Erdés, Paul, 767
corner attack, 650-652 Erickson, Jeff, 690, 766
defence, 647649 Ernst, M. D., 690, 765
edges, 40, 43, 135, 345 escapade, 677, 679-681, 684, 703, 704, T09
bLue and Red, 2-6, 29, 30, 77, 198, 201, eternal games, 46, 379
230, 237, 329, 343 Etienne, D., 766
grBen, 29, 30, 33, 40, 41, 190-196, 198202, etiquette, 631
204-206, 210, 211, 218, 220, 221, 225, 237, Evans, Ronald J., 767, 768
251, 330 even, 279, 281, 282, 287
pink and pale, 343-344 evicts!, 306
Edmonds, Jack, 767 timer, 303, 305, 307, 314, 317

effective computability, 640 Even Alteration Theorem, 511
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Even, Shimon, 224, 225, 744

Evie Parr = even parity, 545-550, 558, 569,
570, 572, 575, 578-580

evil = even, 287, 307

evil nimbers, 110, 111, 463, 464, 891

exactly periodic, 86

exceptional altitude decrements, 704

exceptional values, 90-92, 101, 108

excitable, 157161, 169-172

excluded tolls, 306

excluded values, 111

exemptions, tax, 151

exit move, 829-830, 838

Exit Theorems, Beasley’s, 829, 830, 837, 838

Ex-Officers Game = -06, 101-103, 445, 504

exp time, 763

explosive nodes, 49, 50

exponential-time algorithms, 224

exposure, death by, 927

extended thermograph, 161-162

extended thermography, 759

Extras, 14, 46, 73, 101, 133, 180, 219,
324, 360, 408, 442, 488, 535, 571,
665, 690, 725, 756, 834, 910, 958

92,

32,

55,

255, 2
607, 6

F&G = Fox-and-Geese
Museum, 705, 706-708
position, circled, 682, 683
Values, initial, 697, 699-701
fair board, 646, 664
fair position, 642, 645, 646
Fair Shares and Unequal Partners, 380, 394
Fair Shares and Varied Pairs, 379, 410
fairy chess, 117, 641
fairy tale, 312
Fajtlowicz, S., 632
Falada, 312-314, 319-321, 325-326
Falkener, Edward, 767
Fano's Fancy Antonim Finder, 495
far star = remote star, 230-232, 236-240, 243—
251, 258, 259
farm, 146, 488, 812, 934, 952
favorite, 262, 278, 282, 284, 289
Felton, G. E., 768
fence, 488
Fencing, 488
Ferguson’s Pairing Property, 86

Index
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Ferguson, Thomas S., xiii, xvii, 86, 117, 430,
454, 539, 766
Fermat powers of two, 47
Fermat, Pierre de, 476, 940
Fermat problem, first
solution of, see margin of page 940
ferz = fers, 641, 642
Fibonacci Nim, 517
Fibonacci numbers, 517, 518, 520, 535
Fibulations, 520, 535, 537
fickle, 413, 423-425, 429, 432, 434, 514, 533
field, 145, 312-314, 325-326, 483
Fifteen Puzzle, Sam Loyd’s 864, 867
fifth column, 411
figure eight, 932
finalist, 811, 812, 815, 834
fine print, 126
finicky figures, 323
finished product, 824
finishing line, 407
firm, 413, 423-425, 429, 432, 514
first
bite, 323
cousin, 101, 103-105, 107, 109, 114, 116
eaten strip, 295
home, 278, 283, 320, 322
horse stuck, 281
off, 312
one-by-one cake, 284
player wins, 28-30
strip, 295
fit 22, 251
Fitted Carpets, 479
Five-in-a-row, 378, 740
Fives
Acrostic Mock Turtle, 487
Ruler, 470
Staircase, 499
Triplet, 470
fixed 335
Flags of the Allies Puzzle, 895, 920
Flanigan, James Alan, 377, 445, 539
Flanigan's Game = .34, 504
flare path setter, 936
flat, 430
Fleischer, R., 763
flip-flop, 931
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floor, 51, 75, 311, 485
flow, 202, 204-206, 208, 209, 222
flow, cash, 126
Flow Rule, 201, 202, 204, 210
flower, 29, 30, 33, 35, 36, 47, 66, 67, 190, 195,
199-201, 210, 230, 240, 242, 245, 246, 364
flower garden, 190, 199, 229, 230, 240
flowerbed, 242, 244, 246
flowerstalk = stem, 36
flowers, Hackenbush, 675, 695
Fool's Solitaire, 826, 835
foot, 211, 212
Football, Philosopher’s, 752-755
Fondanaiche, Philippe, 533
Ford, Lester R., 205, 212, 225
Foregger, T.H., 910, 923
forging, 389
fork, 332
threat, 740
form
canonical, 22
simplest, 22
standard, 101, 103-105, 107-109, 114
formation, 677, 686, 702, 705
central, 695
circled, 687
migrating geese, 703, 709
Formula, Cooling, 151
foundations for thermographs, 155
Four-in-a-Row, 737, 738
Fox Game = Hala-Tafl, 666
Fox’s Safe Dancing Haven, 695
Fox-and-Geese, 15, 666, 669-709
value of, 673
Fox-Flocks-Fox, 673, 674, 697, T09
FOXSTRAT, 684-687, 692, 693, 697
FOXTAC, 681684, 687, 692
fractional
atomic weights, 234-236
multiples, 255-257
Fraenkel, Abraham, 927
Fraenkel, Aviezri S., xvii, 18, 78, 224, 226, 412,
489, 517, 539, 763
France, 736, 894, 905
free, 335, 715
free your fetters!, 565
freezing point, 154, 168-172
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Fremlin, David, 881
French Military Hunt, 15, 711-713, 897
Fried, Kati, 875
frieze patterns, 509-512, 535
Freystafl, 666
Frogs, see Toads
FTOZOM, 598
‘ulkerson, Delbert Ray, 205, 212, 225
Full Moon, Paschal, 907
function
computable, 630
pagoda, 818-823, 831
remoteness, 279-286
ruler, 98, 436, 437, 470
score # pagoda, 837838
Steinhaus, 279
suspense, 286-289
Welter, 193, 506-514
fundamental insects, 598, 600
Fundamental Theorem of Zeroth Order Mor-
bundity, 598
Funkenbusch, William, 768
furniture, redwood, 211, 212, 213-217, 222
fuse, 192, 936
fusion, 192-196
Fusion Principle, 192-195
fuzzy flowers, 29, 30
fuzzy games, 28-33, 35, 36, 39, 42, 239
fuzzy positions, 28, 32, 33

G-ness, 422
G-raph, 205-207
G-sequence = nim-sequence
G-string, Air on a, 97
G-string, 524
G-value = nim-value
Gale, David, 117, 632, 640, 744, 768
gallimaufry, 68, 75, 757
Galvin, Fred, 253
galvinized games, 253, 254
game
acrostic, 482487
additional subtraction, 395
annihilation, 224
big, 65, 75, 202, 206, 222
birthdays, 417
cheap, 387
coin sequence, 635
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cold, 145, 299, 300, 307, 316, 317

comparisons of, 25

compendium, 109, 387

compound, 31, 299, 312

coolest, 173

eating, 136, 234, 286, 289-292, 295-297

entailed, 379, 396-405

equitable, 157161, 169, 170, 172

eternal, 46, 379

excitable, 157-161, 169-172

fairly hot, 307

finite, 46, 115

fuzzy, 2833, 35, 36, 39, 42, 230

galvinized, 253, 254

half-tame, 423, 435437, 444, 445

hard, 211, 217, 223

hexadecimal, 116, 117

hot, 125, 133, 145-174, 176-185, 187, 225,
300-308, 316, 326

identification, 65

impartial, 14, 40, 56, 82, 84, 196, 220, 281,
283, 284, 289, 291294, 296, 297, 330, 379,
396

impartial loopy, 275, 379-412

impartial misére, 275, 413, 446

in the jungle, 204, 208, 210

locator, 101, 103, 464

loopy, 15, 275, 327, 334-377, 396, 758, 764

many-dimensional, 220, 488, 742

map-coloring, 38, 145

misére 281, 286-288, 290, 291-294, 312, 413
451

misére Grundy's, 416-420

misere Kayles, 446-451

misere octal, 413-451

misére Welter’s, 514

negative of, 33-35

no-player, 927

NP-hard, 224, 225

octal, 101-116

of encirclement, 665

of Life, 927-960

of pursuit, 15, 669-729

one-horse, 278

ordinal sum, G : H, 220

partizan, 15, 65, 187, 275, 202, 295, 312,
376, 379

Index

reduced, 446

reserves, 414

restive, 425-426, 432-438

restless, 432-435, 443

short hot, 225

simplifying, 60, 62, 63, 75, 77

subtraction, 84, 86, 87, 98, 395, 430, 442,
520-532

switch, 121-125

take-and-break, 81, 82, 84, 86, 87, 89-96,
9%, 99, 101, 103-105, 107-117

take-away, 82, 87, 100, 319

tame, 417, 422-438, 443-446, 514

tameable, 425, 446

tartan, 476482

tepid, 306, 308, 316, 327

tiniest, 125, 126

tracking, 65, 222

trees, 40

two-dimensional, 332, 333, 473-487

wild, 430

with cycles, 376

zero, 4, 9, 33, 41

Game (see also game)

Black Path, 746, 747

Bynum's = Eatcake, 136, 289

Epstein’s, 518-520, 535, 536

Ex-Officer’'s Game = .06, 101-103, 445, 504

Falada, 320-321

Flanigan’s Game = .34, 504

Fox = Hala-Tafl, 666

G4G4G4G4, THT

Grundy's, 15, 96, 112, 310, 434, 439440,
444, 690

Kenyon's = .3f, 116, 117

L-, 384, 408, 412

Lewthwaite's, 747

Northcott’s, 55

One-Star = 4.07, 102, 103, 604

Ovid’s, 736

Put-or-Take-a-Square, 518-520

Ruler, 469, 470, 478, 483, 521

Sato’s Maya = Welter’s, 427

Shannon Switching, 744-746

Silver Dollar Game, 491, 492, 535

The 37 Puzzle, 521
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Welter's, 427, 506-515
Wythoff’s, 15, 60, 74, 427
gaming tables, 492, 525, 526
Gao Xin-Bo, 765
garden 33, 109, 229, 230, 240, 241, 525
of Eden, 705, 938
Gardner, Martin, v, xvi, 18, 52, 143, 208, 502,
607, 640, 668, 713, 729, 736, 767, 768, 839,
840, 885, 919, 923, 959
Garey, Michael R., 217, 224, 226
Gasser, Ralph, 737, 764, 768
gates, logical, 941, 948
gathering, 354
Gauss, Karl Friedrich, 254
gee-up, 247
Geese, see Fox-and-Geese
Geese's Landing, 697
Geese's Strategic Landing Plan, 696
GEESESTRAT, 686, 693, 697
GEESETAC, 686
Generalized Geography, 224, 760
Generalized Hex, 224
Generalized Kayles, 224
generalized thermography, 759, 764
genetic codes for Nim, 605, 606
genetic engineering, 958
genus, 422-446, 501, 504, 587, 588, 590, 597,
604, 607
Geo., 641, 642-644, 646-648, 650, 652, 654,
657, 658, 661, 663, 664
Geography, 517, 539
geraniums, 47, 199, 242, 675
Gerritse, Richard, 621, 624
Gibberd, R.W., 924
gift horse, 72, 77
Gift Horse Principle, 72, 77
Gijlswijk, V. W.,, 384, 412
Ginny, 387-391
giraffe, 205-206
girl meets boy, 854
glass of wine, 379-380
glass, magnifying, 151
glider, 931, 933, 935, 940-943, 944-947
gun, 935, 937, 942, 944
stream, 947-949
Go

complete analysis, 755
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My First, 731
stones, 642, 644646, 648, 650-652, 654
658, 661
Go-Bang, 740
Go-Moku, 14, 740, 743
Goats, see Sheep, 863
Gébel, Frits, 118, 539, 729, 769
Godd, 195, 226
Godd’s label, 195
Golay, M.1.E., 959
Golay code, 467469
Gold Moidores, 464, 465
Goldbach, Christian, 401
Goldbach position, 382
Goldbach’s Nim, 401
Golden number, 906
golden number (ratio),
Golden Pagoda, 819
Goller, Nicholas E., 386, 408
Golomb, Solomon, xvii, 502, 642, 644, 741,
768, 895, 923, 924, 934
GONC = More ) Games of No Chance, 18,
78, 118, 143, 187, 188, 225, 227, 489, 539,
540, 584, 640, 668, 710, T62-769
good = odd, 287, 307
good child, 427
good move, 16, 22, 196, 397
Good, Irving John, 226
Goodell, John D., 764
GOOSESTRAT, 677, 678, 687, 695
GOOSETAC, 675, 676, 695
Goose Girl, 312
Gordon, Pritchett, 607
gosling, 899
Gosper, R. William, 931, 935, 938
Goto, David, 875
Gozreh, F., 840
grafting plumtrees, 354
Grantham, Stephen Brian, 273
graph, 145-147, 205-207, 551-553, 556, 558
562
bipartite, 222, 583
complete 583
spanning tree of, 217, 222
Nimstring, 552-569, H81-583
non-planar, 551
graphic picture of farm life, 145, 146

75, 115, 535, 822-823
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grass, 40, 42, 199, 240, 242
Gray code, 858-861
Great Hall, 372
Great Tantalizer, The 892
greatly-valued carpet, 480
Great-Aunt Maude, 387
Greaves, John, 022
Grecos, A.P., 924
Greek gift, 72, 77, 547
Greek letters, loopy, 335
Green, Trevor, 533
green
chain, 40
edges, 29, 30, 33, 41, 190-196, 198-202, 204—
206, 210, 211, 218, 220, 221, 235, 237, 251,
330
girl, 192, 193
Hackenbush, 39-42, 190-196, 225
jungle, 198, 199, 201, 220, 221
snake, 40
tinted nodes, 204
tracks = paths, 202-210
trees, 191-193
greenwood trees, 34
Gregorian calendar, 905
grey heap, 532
grin, 936
Gros, L., 924
Gross, Oliver, 744
Grossman, J. P., 755, 757, 763, 768
ground (=earth), 193, 550, 551
grounding cycles, 193, 196
group
alternating, 867
symmetric, 867
grown-up picture, 43
Grundy
scale 87, 90, 91, 94, 96, 101, 398-399. 406
Skayles, 91
Grundy, Mrs., 310
Grundy, Patrick Michael, 42, 56, 79, 117, 220,
221, 333, 417, 444, 454, 924
Grundy's Game, 15, 96, 112, 434, 439-440,
444, 690
misére, 416-420
wild animals, 431
Grunt, 472, 473, 481

Index

Guibas, Leo J., 885, 924
Guiles = -15, 94, 101, 103, 436, 444

gun
glider, 935, 937, 942, 944
thin, 947

Guy, Michael John Thirian, 111, 464, 520, 535,
621, 827, 845

Guy, Peter Richard Thirian, 841

Guy, Richard Kenneth, 18, 89, 98, 109, 117,
118, 123, 144, 386, 489, 539, 621, 640,
768, 951,

Haber, Heinz, 840
hack, 675, 684, 693, 695
Hackenbush
Blue-Red, 1-6, 17, 20, 23, 27, 28, 77, 78,
197, 211-217
Childish, 43, 52, 157, 237
Double, 343
Green, 33, 34, 189-196
Hotchpotch, 29, 33, 36, 37, 47, 6668, 107
210, 218222, 229, 230, 237, 238, 242246,
9251, 897
infinite, 327-332, 344, 345
is hard!, 211, 217
loopy, 343-345
number system, 78
picture, 1-5, 189-195
string, 22, 23, 77, 78, 194, 195, 327-331
von Neumann, 606
Hackenbush companion, 693
Hackenbush, flowers, 675, 695
hacking toll, 686
Haigh, J., 766
Hajtman, Béla, 924
Hala-Tafl, 666
Hales, Alfred W., xvii, 740-744, 748, 768
half-move, 4, 7, 9, 19, 20
half-off, 356
half-on, 356
half-perfect square, 886, 890
half-tame, 414, 423, 435, 444
halving, 620
of nim-values, 195
Hamlet’s Memorable Problem, 826
Hammer and Sickle, 835, 836
handouts, 547
Handsome Hans, 525
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Hanner, Olof, 188
Hanoi, Tower of, 861
Harary, Frank, 748
Harborth, H., 768
hard game, 211, 217, 222, 223
hard problems, 223-225
hard redwood bed, 217, 222
hard-hearted, 547
hard-headed, 179
hardness, 211, 217, 223, 225
Hare and Hounds, 711-729
Hares and Tortoises, 862, 915
harmless mutation, 562, 564
Harrocks, 517
harvester, 936
Harvey, Sir Paul, 924
Harry Kearey, 318
Haselgrove, C.B., 896, 924
Haselgrove, Jenifer, 924
Hashimoto, T., 762
havoc 807, 937
Hawaii, 16
Hawaiian checkers, 759
head, 807

animals’ 205

girl's 193, 196

losing your, 222

severed, 205, 220-222

shrunken, 220-221
heaps, see also Nim-heaps
heap, see also Nim-heaps

black, 532

colored, 532

grey, 532

quiddity, 534

white, 532
heart, change of, xvii(2)
hearts, 359
heat, 125, 132, 145, 299
heat, latent, 307
heating, 167, 173, 690
height, 675, 686, 687, 698, 703
Hein, Piet, 744, 843, 898
Hensgens, P., 762
Hentzel, Irvin Roy, 840
hereditarily tame, 425
Hermary, 840
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Hertz oscillator, 932
heuristic discussion, 158, 159
Hex, 224, 226, 743, 744, 767, 768
hexadecimal games, 116, 117
hexagon, 744, 854, 855, 896-899, 919
Hexiamond, O’Beirne's, 896-898
Hexomino, 748
Hi, 609, 610, 617, 631
Hi-Q), 804
hi, 355, 356
Hickerson, Dean, 51, 521
Hickory, Dickory, Dock, 521
hidden secrets, 842-844, 846, 895, 897, 899
hierarchy, 95
high atomic weights, 706
high central region, 697, 698
high region, 688, 692,693, 700, 701
high scrimmage region, 697
higher ground, 209
highway, 364, 391
hilarity, 380
Hilbert Nim, 333
Hillman, A. P., 79
Hirshberg, Susan, 765
Hnefatafl, Saxon, 666
Hockey, 15
Hogan, M. S., 517, 539
Hoey, Dan, 112
Hoffman, Dean, 845, 913
Hoffman, Professor = Lewis Angelo, 768
Hoffman’s Puzzle, 845-846, 913-915
Hofstadter, Douglas R., 924
Hoggatt, Verner E., 79
Holladay, John C., 118, 584
Hollosi, A., 762
hollvhocks, 36
home, 277, 280, 281, 286, 289, 320, 322, 386—
387
Honest Joe, 158, 159
Honsberger, Ross, 840
Hopscotch, 737
Horrocks, D. G., 539
horse, 28, 277-284, 286, 288, 289, 202, 203,
312, 320, 325, 406, 407
also-ran, 286
favorite, 278, 282, 284, 289
gift, 72, 77
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outsider, 286, 289
racing, 288
remote, 278
slow, 286, 289
working out, 28
Horsefly, 395, 411
Hoshi, Y., 766
hot, 300, 301, 322, 326, 355-356, 710
hot, 125, 133, 145, 149, 151, 171, 173, 225, 300,
304, 307, 316
battle, 145, 299-308, 310, 322, 327
coating, 322
component, 299-300
game, 125, 133, 145, 171, 173, 225, 300, 307,
316, 317, 326
position, 149, 304
work, 316
Hot Atomic Weight, 706
Hotcakes, 209-304
Hotchpotch, Hackenbush, 38, 47, 66-68, 198
202, 204-206, 208-211, 225, 230, 238, 251,
896
Hotstrat, 188
Hound-Dog Position, 724, 729
Hounds, see Hare, 711-729
house and garden, 33
House of Cards, 357-361
Howells, D. F., 539
Huddleston, Scott, 640
Hudson, Paul D.C., 534, 539
Hungarian Cube, 868-876, 917-918
Hunter, J.A.H. “Fun with Figures”, 924
Huntjens, M. P. H., 740, 767
Hutchings, Robert L., 615-617, 631, 827
Hyperspace Tit Tac Toe, 768

Icelandic sagas, 666
idempotent, 693
Igusa, K., 761, 766
lida, Hiroyaki, 762, 765, 766
Iida, Takahito 766
illegal, 320, 322, 404
Imai, Hiroshi, 766
imminent jump, 9-11
impartial, 15, 40, 56, 82, 84, 196, 220, 291, 330,
379, 396
Chutcakes, 284, 292, 204
Domineering = Crosscram, 142, 144, 298

Index

horse-moving, 283, 289
infinite tolls, 314, 315, 317, 319, 320, 326
loopy games, 359-363, 366-375
remoteness, 296
incentive, 147, 148, 256-259
incomparable, 35
indefinite F&G boards, 674, 686
Independence Day = Doomsday, 903
induction, 115, 234
index
decremented, 705
inequalities for stoppers, 351
Inequality Rule, 348-349
infinite
delphinium, 47
ender, 329
frieze pattern, 512
geranium, 47
Hackenbush, 327, 332, 344
Nim, 330
nim-values, 636, 640
ordinal numbers, 329
remoteness, 381
repetition, 14, 384
Smith theory, 333
tolls, 315-320, 325-326
infinitesimal 36, 169, 170, 171, 173, 229, 539,
690
infinitesimal numbers, (See over)
infinitesimals, in F&G, 690
loopy upon®, 708
loopy positive, 693
negative, 708
pure, 706
infinitesimally close, 151, 152, 154
infinitesimally shifted, 177-179, 198
infinitesimally small, 158
infinity, 329, 334, 391
Inglis, Nick, 51
initial F&G Positions
values of, 688
initial F&G Values, 698-701
initial values, 698, 699
ink, waste of, 382
input, 942, 944
Instant Insanity, 892
integral, 167-174, 176-179, 334, 366-367
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Intermediate Value Theorem, 426, 438 jungle
interval, confusion, 121, 149-151, 158, 163 clearing, 222
intrigning women, 524 egreen, 198, 201, 220, 221
inverting Welter’s function, 510-512 parted, 201, 202, 209
invoices and cheques, 126 sliding, 198
inward move, 677 smart game in, 209
irrational, 610 tracking, 204-208, 221, 222
irregular values, 90-92, 101, 108, 187 unparted, 210
ish = Infinitesimally-SHifted, 177-179, 198
Isidor, Bishop of Seville, 768 k-number, 471
isolated circle, 684 Kajihara, Y., 762
isomorphism, 469, 473, 491, 529, 586, 604, 632, Kano, M., 118
732, 733 Kao Kuo-Yuen, 188
Isotopy Extension Principle, 853 Karp, Richard M., 217, 224, 226
Italy, 905 Kasai, Takumi, 765
Itoh, H., 766 Katzenjammer Puzzle, 892
Iwata. S.. 769 Kayles = .77, 15, 81, 82, 88-92, 95, 98, 99,
Iwata, Shigeki, 765 109-112, 224, 417, 424, 425, 431, 444-452,
500, 504, 566-569
Kayles

Jacobson, Guy, 602, 607
Jaftrey, A., 539

Jam, 732

Japan, 894

Japanese chess, (See Shogi)
Jelly Beans = .52, 428, 444

Dawson’s = -07, 15, 89, 92, 95, 101, 260,
438, 439, 444, 500, 504, 566, 569

Double, 99

Misere, 446452

Quadruple, 99

Triplicate Dawson's, 260, 271

Jam, 732 Kayles-vine, 567, 568, 579, 690
Jenkyns, Thomas Arnold, 539 Keller, Michael, 756
Jewett, Robert 1., 740-744, 748, 768 Kenyon’s Game = -3f, 116-117
Jewish New Year, 909 Kenyon, John Charles, 109, 115, 118
jig-saw puzzles, 895, 900-903 kickback reaction, 947
Ji-Hong, Shen, 765 Kierulf, Anders, 764
Jimmy, 387-391, 413 killing mutation, 562
Jin-Bai, Kim, 764 Kim, Yonghoan, 764
Jocasta, 597, 607 Kindervater, G. A. P., 384, 412
Johnson, David S., 217, 224, 226, king
join, 277-298, 300 centred, 657, 658
rapid, 286, 289 cornered, 658, 660, 661
slightly slower, 283 edge-charging, 650, 652
slow, 286-291, 300, 302 sidelined, 661, 663
joints, 562, 564, 566 rook versus king, 667
joker, 358 King’s Horses
jump, 8-12, 63-65, 75, 76, 127-131, 133-137, All the, 277-283, 286-289, 292, 293
803-812, 817, 820, 825 826, 828832, 835, Some of the = Falada, 312
837838 King, Kimberley, 222
jumpee, 11 Kinggo, 646-664
jumper, 9 Kite Strategy, 243, 244, 246

jungle warfare tactics, 210 Klarner, David A., 539
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knight, 278, 395, 411, 641 remoteness, 279, 281-283
Knight, White, 56-59, 278 stop, 149, 150, 152, 161

Knights of the Square Table, 756 tally, 301, 302, 304, 310, 314, 327
Knuth, Donald Ervin, xvii, 18, 51, 473, 489 Lefty, 25, 51, 234, 284, 289, 300, 308
Kolpin, Garrett, 758 leg, 211-213, 215, 222

Konakis, 666 Lehman, Alfred, 768

Konane, 690, 759, 760, 765 Lehman’s switching game, 767
Korner, Thomas W., 665 Leibniz, Gottfied Wilhelm von, 818, 840
Ko (see also loopiness), 377, 758 Lemma

Kotzig’s Nim, 515, 517 Norton’s, 220, 243, 244, 354
Kotzig, Anton, 516, 539 Snort, w0

Kraitchik, Maurice, 710, 840, 924
Kriegspiel, 15, 667

Kuperberg, Greg, xvii

Kutz, Martin, xvii, 748

Lemon Drops = -56, 428, 444
Lenstra, Hendrik Willem, 461, 489
Les Pendus, 736, 737

Lester, W.E., 923

L-game, 384, 408, 412 Let them eat cake!, 289
L-package, 809, 832 Levine, J., 765
L-purge, 809, 837 Levy, D. N. L., 764
Lacrosse, 15 Levy, Silvio, xvii
ladder, 386-388, 504, 897, 899, 921 Lewis, Anglo, 768
Lake, Robert, 763 Lewthwaite, G.W., 747
Lam, T. K., 607 Lewthwaite's Game, 747
landing Li Shuo-Yen, Robert, 343, 373, 377, 539
fox, 693-695 lice, infestation with, 600
geese, 697 Lichtenstein, David, 224, 226, 763
Landman, H. A., 764 Life, 15, 53, 927-960
L’Ane Rouge, 875 computer, 940, 958
large boardwidth, 710 configuration, 935, 940, 957
Largest Nim, 532 cycle, 930-932
Lasker, Edward, 99, 118, 768 environment, 958
Lasker's Nim, 99, 113, 114 history, 928, 935-937, 940
last cut, 294

is universal!, 957

pattern, 934, 940, 958

sole aim in, 958

space, 959

still, 929, 032
Life’s but a game, 939
Life’s Problems are Hard, 939
Life’s unpredictability, 934
Lifeline, 960

last home, 286, 289

last horse, 286, 289

last move, 171

last mouthful, 289

last player losing, xvii(2), 413-452

last player winning, xvii(2), 2, 8§, 12, 14
latent heat, 132, 307

latent loopiness, 375, 391

latent phase change, 168

lateral thinking, 384, 412 Lifenthusiasts, 930

Latin squares, 497 light positions, 677

Lee, Chester C., 738, 960 lightening, 684, 686, 694

Left, 2 lightening move, 677, 678, 685
boundary, 154-156, 164, 165, 169, 170 lightning bolts, 50

excitable, 158-159 limbs, stretching, 565
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line
of scrimmage, 687
real number, 23
wiggly, 560, 565, 582
Linnaeus, Carolus, 666, 668
Litchfield, Kay P., 924
little safe, 621
live cell, 927-929, 934
live spots, 598, 601, 602
Lo, 609, 610, 617, 631
lo, 355-356
Lo-Shu, 886
loaf, 929, 935, 943
Loeb, D. E., 766
logical gates, 941, 942, 948 949
lollipops, 237, 238, 240
long, 546
barge, boat, 928
chain, 543, 545547, 549, 550, 552-556, 561,
563, 564, 569, 574, 575, 577-579, 829
cycle = loop, 553-555, 565
path, 562, 563
period, 108, 109
ship, 929
Long Chain Rule, 546, 549, 550
loony, 322, 307-407, 558, 561-564, 576, 577
579, 580
loony endgames, 577
Loony Loop, 849, 852, 861
loop, 929
looping the, 947
long, 554
short, 554
loopiness (see also kos, superkos), 361-363
blatant, 391
degree of, 360
latent, 375, 391
patent, 376, 391
Loops-and-Branches = .73, 586
loopy, 758
component, 390, 410
game, 327, 334-377, 396, 758, 764
Hackenbush, 343-345
infinitesimal (See over, upon™®), 708
number (See over), 341, etc.
option, 410
positive infinitesimal, 693
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position, 389, 408, 758
value, 387, 389-391, 758

lose control, 574

lose slowly, 278

lose your shackles!, 565

losing, last player, xvii(2), 413-452

Lost World, 413-414

louse, 600

Lovasz, L., 766

low region, 688, 698

Lower region, 697

Loyd, Sam, 82, 118, 864

Lucas, Edouard, 588, 607, 713, 729, 768, 840

862, 924

Lucasta, 585, H88-597

Lucky Seven Puzzle, 864-866, 876, 916

lucky star, 246, 249

Ludo, 14, 15

ludus terni lapilli, 736

Lukewarmth Commandmant, 307, 310

lush delphinium, 675, 677, 681, 684

Lustenberger, Carlyle, 768

m-plicate, 98
MacMahon, Major Percy A., 924
MacMAhon
jig-saws, 900-902
squares, 899-902, 921
superdominoes, 8§99-902
triangles, 899
Macmillan, R. H., 768
Madachy, Joseph S., 924
Magic
cube, 866-874, 918-919
Fifteen, 733
hexagon, 890, 920
Mirror, 749, 752-754, 756-758
Movie, 854-855
square, 733, 886-891
tesseract, 889
Maharajah and Sepoys, 710
Mahomet, 854
making tracks, 202, 204-209, 221, 222
management of cash flow, 126
Mancala, 761, 766
many-way Maundy Cake, 220, 221
map, 37, 145, 414, 879-884, 910-913
Mark, 4.24: Matthew 13.12, 405
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Markeert, D., 225
markup, 161
Markworthy Commandment, 317
Martin, Greg, xvii, 644, 645, 668
Mason, R. E. A., 764
mast, 152, 154, 163
mast value = mean value, 165, 166
mate, H06, 507
Mateescu, A., 764
Mathematical Go, 759
mathematician, 936
Mather, MIchael, 910, 923
Mathews, Charles, 764
Mathieu, Emil, 469
Mating Method, 506, 507
mattress, 215
Mauhin, Patrick, 27
Mauldon, James G. 79
Maundy Cake, 26, 27, 51, 196, 220, 221
max, 288
maxim, 278, 279, 287
maximal flow, 202, 204-206, 209
May-Day, 903
Maya Game, Sato’s = Welter's Game, 427
Mayberry, John P., 533, 539
McCurdy, S., 763
Meally, Victor, xvii(3), 506, 920
mean value, 149, 151-154, 165-168, 172, 174,
178
Meander, 747
Meier, Kersten, 924
Melencolia I., 888
men = Phutball players, 752
Merrilees, 737
Method
Magic Mirror, 849-854
Magic Movie, 854, 855
Mating, 506, 507
Methuselah, 937
mex = Minimum-EXcludant, 56, 82, 83, 418,
556, 68
migrating geese formations, 703, 709
Mill, 737
Miller, J.C.P., 924
Milnor, John, 188
Milton, John, 19, 145
minimal criminal, 194, 214

Index

minimal spanning tree, 216, 217, 224
Minsky, Marvin L., 954
miny, 126-129
miny, 353, 356, 359, 360, 362
Miracle Octad Generator, 468, 469
Mirror, Magic, 849, 852-854, 856-858
misére

birthdays, 417

Contours, 587, H88

Cram, 504-506

Cutcakes, 284, 292, 294

Eatcakes, 289, 291

Grundy’s Game, 416-420

Kayles, 431-432

Loops-and-Branches, 586

Lucasta, 590-597

Mex Rule, 418

Nim, 413

octal games, 443-445

play, 15, 86, 278, 280-285 287-204, 312

413-452, 610, 636

remoteness, 283

Rims, 586

Sprouts, 602

Stars-and-Stripes, 604

suspense, 289

theory, 415-419

Twopins, 501

unions, 312

Welter's Game, 514, 515

Wyt Queens, 427
mistake, inevitable, 382
mixed, 335
Mébius, August Ferdinand, 467
Mobius transformation, 467, 867
Mock Turtle, 461-465

Fives, 470

Theorem, 464-466
Mock Turtles, 463-465
Modular Nim, 539
Moebius, 464-467

Nineteens, 470
Moews, David, 52, 188, 224, 539, 764
MOG = Miracle Octad Generator, 468, 469
Mogul, 464-469
Moidores, 464, 465
Mollison, Denis, 598
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money, 171
moneybag, 492
Monopoly, 15
moon, 379, 903-906
age of, 905
new, 906
paschal full, 906
Moore and More, 534
Moore, Eliakim H., 427, 539
Moore, Edward F., 939, 960
Moore, Thomas E., 607
Moore’s Nimy, 427, 533
Morelles, 737
Morgenstern, Oskar, 539
moribundity, 598
equation, 601
Morra, Three-Finger, 15
Morris, Lockwood, 225
Morton, Davis, 640
mosaic, 936
Moser, Leo, 667, 732, 742, 743, 768
motley, 469, 477, 483
Mott-Smith, Geoffrey, 502, 768
mountain, 7
purple, 197, 198
move 14, 40
abnormal, 325
alternating, 46, 47
had, 16, 547, 818
bonus, 405
chance, 14
complimenting, 379, 405407, 541, 552
consecutive, 405
darkening, 677, 678, 685
entailing, 379, 396-405
equitable and excitable, 161
exit, 829-830, 838
five-eights of a, 20
futile, 654
good, 16, 196, 397
half, 4, 19, 20
horse, 406
hotter, 173
illegal, 320-322, 404, 636
inward, 677
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legal, 404
lightening, 677, 678, 685
loony, 322, 398, 400, 411, 561-564, 576-580
non-entailing, 397-398, 400
non-suicidal, 322, 562
normal, 325
outward, 677
overriding, 312, 314, 317, 319, 320, 326
pass, 281, 283, 284, 286, 289, 292, 293, 294,
338, 352, 355
plausible, 654
predeciding, 312, 320, 321
quarter, 6, 20
repainting, 343
reversible, 55, 56, 60, 62-64, 66, 70, 71, 75,
77, 126, 212, 213, 415
reversible misere, 415
reverting, 425
strategic, 652
stupid, 636
suiciding, 312, 320
sunny, 397-401, 404, 407, 411
tactical, 652
temperature-selected, 132
three-quarter, 17
trailing, 402
worthwhile, 213-216
move set, 515-5H17
Movie, Magic, 853854
Mr. Cutt and Mr. Shortt, 745, 746
Mrs. Grundy, 310
Miihle, 737
Miiller, Martin, 18, 188, 762, 764
multiples of up, 71, 242, 247, 256, 258
multiples, fractional and non-integral, 236
multiplying pegs, 812-816
multum in parvo, 937
Munro, Ian, 226
Murray, H.J.R., 668, 737, 768
Muscovites, 666
musenms, 705
F&G, T05-708
musical series, 96, 117
mutation, 562, 959
harmless, 562
killing, 562
Myhill, John, 960
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n~-dimensional k-in-a-row, 742
N-positions, 83, 279, 381 384, 408, 410, 439,
447-451, 466, 516, 517, 519, 520, 535, 537
572, 573, 589, 592, 594, 613, 615-618, 620,
627, 631, 632, 635, 636, 638-640, T51
n-theorem, 615
Nagai, Ayuma, 766
Nakamura, Teigo, 764
Nash, John F., 744
Nasik squares, 891
negative, 28
charge, 254,
currency, 610
infinitesimals, 708
numbers, 19, 147, 148, 330
of a game, 33-35
positions, 28, 29, 68
negs = negpegs, 831
neighbor, 601
Neumann, John von, 539, 606, 960
von Neumann Hackenbush, 606
Neyman, Abraham, 117
Nim 15, 40-42, 53-59, 82-84, 113, 114, 173,
240, 387, 454, 491-493, 508, 533, 534, 586,
604, 605
Antipathetic, 493
Bounded, 517, 518
Chinese = Wythoft’s Game, 427
Double Duplicate, 114
Duplicate, 114, 116
Entailing, 400
Fibonacci, 517
genetic codes for, 605, 606
Goldbach’s, 401
Hilbert, 333
in hot games, 173
infinite, 330-333, 636, 640
Kotzig's, 515-517
Largest, 532
Lasker’s, 99, 113, 114
misére, 413, 416, 418, 520
modular, 539
Moore’s, 427, 533
Poker, 55
Similar Move, 496-498
Smallest, 532
Sympathetic, 494-496
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Triplicate, 114, 116
two-dimensional, 332-333
Welter's, 427
Nim Addition Rule, 59, 73, 199, 390, 418, 556
nim-addition, 58, 59, 73, 74, 89, 90, 109, 110,
115, 116, 191, 196, 199, 246, 390, 418,
446, 463, 464, 469, 4T1, 473, 475, 476,
497, 506-508, 510, 556, 558, 605, 606, 752
Nim-heaps, 41, 42, 55-59, 82-84, 389, 393, 413,
418424, 426, 430, 434, 436, 442, 462, 469,
491, 504, 514, 605
ambivalent, 426
bogus, 56, 57
nim-like game, 751
nim-multiplication, 475-478
Nim-position, 41, 240, 387-389, 425, 426, 446,
491, 507, 605
nim-product, 475-478, 481
nim-sequence, 82-87, 89, 93, 94, 98-102, 104
108, 116, 529, 530, K87
Nimstring, 552-556, 558-562, 564-567, 569
problem, 552
nimstring arrays, 581
nim-sum, 58, 59, 73, 74, 82, 89, 90, 91, 110,
112, 115, 462-464, 471, 473, 475, 481, 498,
507, 586, 605, 606, 751
nim-values, 82-94, 96-102, 104117, 191196,
230, 387408, 410, 411, 425, 426, 430, 434,
436, 442, 444, 446-450, 462-466, 469488,
498, 506, 507, 514, 521, 529-533, 537,
557-H60, 56T-569, H79-583, H86-590, 597,
604-606, 636, 640, 751, 752
addition, 390
doubling, 94
duplication, 94, 98, 99, 114, 116, 444-445
halving, 195
periodic, 84, 86, 91, 92, 94, 98, 99, 101, 103—
105, 107-110, 112-117
reflected, 109
relevant, 396
replication, 98
nimbers, 40-42, 56-58, 65, T4, 110, 199, 200,
231, 258, 262, 397-401, 405, 406, 418, 556,
558, 581, 690
adding, 42, 58
infinite, 330
Nimj, Moore’s, 427, 533
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Nine-in-a-row, 740, 741
Nine Men's Morris, 736, 737, 768
No Highway, 364-367
Noah's Ark theorem, 423, 432-435, 443
no-player game, 927
node-disjoint cycles, 578
nodes
Col, 47-51
explosive, 49-50
game positions, 42, 341-343, 354-358, 369-
370
Hackenbush, 191-194, 201, 202, 204, 222
Nimstring, 554, 560-562, 564, 576, 578, 581
Snort, 146, 180, 181, 183
tinted, 204, 206, 208, 210
untinted, 204, 206, 209, 210
non-abacus positions, 514
non-arithmetic periodicity, 115
non-number, 147, 148, 159, 160
normal move, 325
normal play, 12, 14, 278 279, 281, 282, 284,
286, 287, 291, 293, 300, 312
normal Soma pieces, 847
Northcott’s Game, 55
Norton, Simon, 145, 168, 188, 220, 243, 244,
247, 256, 354, 496, 520, 535, 667
Noshita, Kohei, 766
NOST, 756
NOT gate, 941, 942, 948-949
Noughts-and-Crosses = Tic-Tac-Toe, 14, 731-
736
novice, 382
Nowakowski, Richard Joseph, xvii(1), xiv(2),
xviii(3), 516, 517, 539, 540, 584, 640, 668,
755, 757, T62-T69
NP-complete, 217, 224-227
NP-hard, 224, 225, 577, 755
Nu, 609
nude, 675
Number Avoidance Theorem, 147-149, 183
number system
Hackenbush, 78
tree and line, 24
numbers, 22, 119, 300, 314
canonical form, 22
empty, 471
evil, 110, 463, 464, 485, 891
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Fibonacci, 517, 520, 535, 537
infinite ordinal, 329
infinitesimal (See over)
k-, 471
loopy (See over)
negative, 8, 19, 708
odious, 110, 111, 463, 464, 471, 472, 481,
891
overheated, 176
simplest, 19, 21, 22, 305, 307, 314
Surreal, 18
suspense, 286-289, 292, 294, 315, 317
thermographic thicket of, 176
triangular, 254
whole, 19
nutcrackers, impossible, 379

O-positions, 382, 384, 390-391, 408, 410

O’Beirne, Thomas H., 79, 118, 452, 515, 539,
729, 768, 769, 893, 924

obtuse triangle, 254

octad, 467469

octal games, 101, 103-105,107-116, 267, 443
445

octal notation, 101, 464, 465, 586, 686

odd, 279, 281, 282, 287, 303, 305, 307, 314, 317

odd admits!, 306

odious numbers, 110, 111, 463, 464, 471, 472,
481, 485, 891

Odlyzko, Andrew M., 883, 924

off, 336-340, 353, 355-358, 674, 704, 710

Off-Wyth-Its-Tail, 402

Officers = -6, 95, 439-440, 444

offside, 336-337, 340, 344345, 348, 354355,
369-370

QOhara, E., 766

O'Hara Frank, 876

Omar, 42, 72, 109, 137, 187, 262, 517, 518, 529,
533, 537, 664, 667, 688, 702, 839, 914

on, 336-338, 353, 673, 686

On-the-Rails, 406407

ONAG = On Numbers and Games, 18, 22, 48,
52, 78, 117, 138, 143, 188, 225, 233, 235,
262, 278, 208, 377, 417, 431, 452, 475, 478,
489, 506, 510, 539

oNe = Weak or Strong place, 713

One-for-you, T'wo-for-me, ..., 319

one-horse game, 278
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One-Star Game = 4.07, 102, 103, 604
One-step, Two-step, 529
One-upmanship Rule, 242
ono, 355-357
onside, 336-337, 340, 344-347, 354-355, 369-
370
oof, 355-358
open, 382, 384, 390-391, 408, 410
opposition, 714-717
option, 14, 154, 155
best, 303
dominated, 62, 63, 75, 77, 149
Left, 31, 32
loony, 558
loopy, 408
non-loopy, 389
questionable, 387
reversible, 60, 62-64, 70, 71, 75, 77, 387
Right, 31, 32
suicidal, 317, 558
worthwhile, 213-215
optional extras, 84
OR gate, 941, 948-949
ordinal numbers, 329
ordinal sum, 220
Orman, Hilarie, xvii, 749, 768
Othello, 760, 765
outcome, 28, 35
classes, 28, 84
of sum, 31, 32
output, 942, 944
outsider, 286, 289
outward move, 677
over 341, 353, 673, 674, 686, 693
overcrowding, 927
overheating, 174, 176, 187, 366, 690
overriding, 312, 314, 319, 326
Ovid, 736, 769
Ozanam, 924
Ozery, M., 79

P-positions, 83, 113, 279, 381-385, 408, 410,
411, 416, 417, 419-424, 426, 431, 447
451, 462, 464469, 493-499, 508, 516522,
526-520, 535, 537, 548, 572, 573, 58T,
589592, 594, 597, 602, 611, 613 616, 620~
639, 751, 752

p-theorem, 615
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packages, 807-812, 815, 834, 836, 837
pagoda functions, 818-823, 831
Pairing Property, Ferguson's, 86, 442, 530, 531
pairs, restive and tame, 425
pale twig, 344
panacea, panache, 809
pandiagonal squares, 891
Paun, Gh., 764
Pandora, 346, 548
paradox, 534, 539
paradoxical
dice, 886
pennies, 885
Parikh, 764
parity, 73, 191, 194, 526, 545, 698, 704, 897
Parity Principle, 191, 194
Parker, Richard, 535
parody, 286
Parotty girls, 545
parted jungle, 201, 202, 209
particles, 168-170
partizan, 15, 65, 187, 292, 295, 312, 376
party trick, 856
Parville De ; = Lucas 7, 862, 924
Paschal Full Moon, 906
pass, 283, 284-286, 288, 289, 292-294
Patashnik, Oren, 769
patently cold and hot, 307
patently loopy, 376, 391
Paterson, Michael Stewart, 598, 898, 902, 903
path, 202, 562, 563, 746, 747
Path of Righteousness, 548
paths = tracks, 193, 202, 204, 222
Patience = Solitaire, 15, 804
Paul, Jerome L., 769
Paul Wolfgang J., 226
Paulhus, Marc, xvii
paw mark = block, 936
pawns, 89
pearls, 522, 523
Peek, 224
Peg Solitaire, 15, 801-840, 897
Pegg, Ed, xvii
Pegity, Pegotty, 740
pegs, 803-840, 859, 860
pencil-and-paper game, 1, 604
Penfield, Wilder, 414
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Penrose, Roger, 876
pentadecathlon, 934, 937
pentominoes, 749, 895-896, 934
perfect square, 886
periodicity, 89-91, 96, 99, 100-102, 104-109,
111-115, 117, 236, 292, 310, 311
arithmetic, 99, 113-117, 144, 187
Dawson’s Chess, 90-91
Domineering, 144, 187
Eatcakes, 289, 291
exact, 86
Guiles, 94
Kayles, 91, 92
octal games, 101, 103-105,
115
subtraction games, 84, 86
ultimate, 99, 101, 112, 289, 522, 529, 752
petal, 33, 47, 66, 67, 100, 201, 240, 245, 344
Petrie, Douglas G., 937
pharisees, 601, 602
phase change, 167, 168
phase change, latent, 168
Philosopher’s Football = Phutball, 224, 752-
755
Philpott, Wade E., 839
Phutball, 224, 752 755
picture, 1, 2, 190, 192, 467, 468
of farm life, 145, 146
piebald node 47-48
piebald spot, 145-147
pink twig, 344
place(Zero, oNe, Two), T12-719, 728, 729
placing plumtrees, 354
Plambeck, Thane E., 454
play, 334
misére, 15, 278, 280-295, 312, 413-452, 590—
597, 610, 636
normal, 12, 14, 278, 279, 281, 282, 284, 286,
287, 291, 293, 300, 312
player
first, 28-30
second, 28-30
symmetrical, 547

107-109, 113-

playing backwards, 817
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playing the averages, 167, 173
Pless, Vera, 489
Ploy
Blue Flower, 199, 201, 240, 242
Blue Jungle, 201, 210
Red Jungle, 210
Plugg = Cram, 141, 143, 208, 502-506
plumtrees, 352, 354, 357
poisoning, 754
Poker, 15
Poker-Nim, 53-55, 491
pole, barber’s 936
Policy, Searching, 894-895, 898
Policy, Temperature, 124, 125, 131, 132
Pollak, Henry Oliver, 740
Polyiamonds, 895
polyominoes, 120, 139-142, 748, 749, 895
pond, 929
Pond, I. C., 539
Poole, D. J., 517, 539
PORN, 630, 631
position, 14
abacus, 513-515
active, 149, 150
ajar, 408-410
circled, 681, 684, 685, 696
closed, 408-410
cold, 301, 304-306, 322
complementary, 816
criticial, 687
daggered, 677
dark, 677
Domineering, 120, 121, 139, 142, 144, 153,
177
exceptional, 717
F&G, 682-683
fair, 642
fickle, 413, 424, 425, 429, 432, 434, 514
firm, 413, 423, 425, 429, 432, 435, 514
fuzzy, 28, 32, 33
Goldbach, 382
hot, 149, 304
Hound-Dog, 724, 729
light, 677
loony, 322, 397, 407, 557, 558
loopy, 389, 408
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N-, 83, 279, 381-384, 408, 410, 439, 447-
51, 466, 516, 517, 519, 520, 535, 537, 572,

573, hR9, 592, 594, 613, 615-618, 620, 627,
631, 632, 635, 636, 638640, 751

negative, 28-30, 68

non-abacus, 514

-, 382, 384, 390-301, 408, 410

P-, 83, 113, 279, 381-385, 408, 410, 411,
416, 417, 419-424, 426, 431, 447451, 462,
464-469, 493-499, 508, 516-522, H26-529,
535, 537, 548, 572, 573, 58T, HR9I-592, 594,
597, 602, 611, 613-616, 620-639, 751, 752

positive, 28, 68

Scare’m Hare'm, 719-721

stable, 705

starting, 14

sunny, 397-398, 401404

tepid, 306

terminal 2, 7, 29, 41

unstable, 705

Translation, 149, 153, 158
Uppitiness Exchange, 246
Pritchett, Gordon, 607
problem
Amazon, TH6, 761
Bumble-Bee, 827
Clobber, 758, 761
Deader Dodo, 827
Dots-and-Boxes, 570, 578-580
escapade, 681
Fox-Flocks-Fox
hard, 223, 224, 827, 831, 948, 957
Hamlet’s Memorable, 826
Konane, 759, 760, 762
Nimstring, 552
reversal, 809-810, 820, 826-827, 831-832,
839
Three B'ars, 827
unsolved F&G, 710
Prodigal Son, 825, 826
product

positive
charge, 263 acr.osti::.. 482487
house, 38 finished, 824

Gross National, 826
nim-, 475-478, 481, 488
raw, 824
ugly, 483
productive, 824
professional boxer, 548
Professor Hoffman (Angelo Lewis), 768
profit, 161, 492, 843
profit-consciousness, 171
program cycle, 316
projective, 430
proof, 115, 147, 148, 165, 166, 183, 188, 201,
212, 213, 216, 217, 220, 221, 224, 236, 240,
248-250, 256-259, 340, 348-350, 370-373,
408, 435, 442443
Proviso, Endgame, 416-417
pruned, 675
pruning plumtreees, 354
pseudocorner, 664
PSPACE, 224, 227, 760, 765, 766

house and garden, 33
positions, 28, 68
posy, 29, 30, 33
POT(S), POTSHOT, 738-740
poultry, 755
predecider, 312, 320, 321
pretending, 421, 439, 445
Price, B.D., 924
Prim, 98, 404, 442
Prince Charles, 525
Princes’ Code of Behavior, 537, 538
Princess and the Roses, 524-528, 537, 538
Principle
Bogus Nim-heap, 56
Colon, 191, 193, 194, 220, 355
Complimenting Move, 405
Death Leap, 127-130, 135
Enough Rope, 16, 547, 736
Fusion, 192-195

Gift Horse, 72, 77
Isotopy Extension, 855
Parity, 191, 194
Star-Shifting, 250, 258

-complete, 224, 226
-hard, 224
puffer train, 937
pulsar CP, 930, 936
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pulses, 940, 941
purchasing contract, 127
pure infinitesimals, 706
purges, 807-809, 828, 834, 837
purple mountain, 198, 199
pursuit, 15, 298
Put-or-Take-a-Square = Epstein’s Game, 518
520, 536
putative nim-value, 471, 472
Puzzle
Century, 877, 878, 881-885, 919
Century-and-a-Half, 878, 885, 919
Donkey, 877, 878, 881, 885
Fifteen, 864, 867
Flags of the Allies, 895, 900-902
Hoffman's, 847, 848
jigsaw, 895, 900-903
Lucky Seven, 864-867
sliding block, 877-885, 919
Solitaire-like, 862
The Thirty-Seven, 521
Tricky Six, 867, 868, 876
wire and string, 849-861
Wir(e)s(tr)ing, 851

Quadraphage, 143, 208, 642, 643, 664, 668
Quadruple Kayles, 99
quality of quaternity, 528
Quam, 534
quantity beats quality!, 201
Quaquaversal Quadrimagifier, 888
quarter-infinite board, 284, 292, 293, 312, 642,
644, 654, 667, 751
quarter-move, 6, 91, 20
quarter-perfect square, 889-890
queen bee, 937
Queen Elizabeth, 905
quiddity heap, 534
quiet end, 609, 617
position, 617, 618, 620,
theorem, 618-620, 624, 629
quietly excludes, 617
quietus, 619
quintessential quinticity, 528
quintominal dodecahedra, 921
quintominoces, 900
quotation marks = eccentric cases, 231, 232,
51-253
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rabbit, 711
Rabin, Michael O., 640
Radcliffe, William, 920
rademacher, rado, radon, 371
Rademacher, Hans, 571, 584
Rails, 585, 586
randomness reigns, 528
range, 497, 498
trifurcated, 705
rank, critical, 710
rapid join, 286, 289
rare values, 110-112
raw product, 824
reaction
kickback, 947, 948, 953, 955
vanishing, 941-943, 947, 948, 951
Read, Ronald C., 924
reader,
assiduous, 42
gentle, 706, 812
more mathematical, 362
persevering, 90
skeptical, 130
real number line, 24
rectangles, 25-27, 141, 234-236, 632, 664, 895
Red edges, 2, 198, 230, 237
Red tinted nodes, 48, 204
Red twig, 213
Red-Blue Hackenbush, see Blue-Red Hacken-
bush
Red Jungle Ploy, 210
reduced game, 446
redwood
bed, 211, 213, 217, 222
furniture, 211, 217, 222
tree, 214-217
twig, 213, 216
Reeve, John E., 924
References, 18, 52, 78, 117, 143, 188, 225, 262,
208, 377, 412, 452, 489, 538, 584, 607, 640,
G668, 710, 729, 762, 840, 923, 960
reflexion of Nim-values, 109
register storage, 951
region, 692
delta, 697
high, 688, 692, 693, 700, 701
high central, 697, 698
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region, low, 698
lower, 697
transition, 702
transitional, 701
trifurcated, 701, 702
Welton's, 688, 693, 695, 697, 699-702, 704,
705
Reid, Michael, xvii
Reisch, Stefan, 226
Reiss, M., 814-815, 818, 840
remote, 243
horse, 278, 280, 281-283
remote star, 230-232, 236, 237, 239, 240, 243-
252, 258, 259
Remote Star Test, 246249
remoteness, 173, 279-286, 289, 292, 293, 295-
297, 315, 317, 381-386, 519, 520, 535-537,
725-T28, T40
even, 279, 281, 282, 381
horse’s, 281-284, 292
infinite, 381-382
Left, 279, 281-283
misére, 280-285, 292, 293, 295
normal, 279
odd, 279, 281, 282, 381
Right, 279, 281-283
rules, 279, 281
repainting moves, 343
replication of nim-values, 98, 529
reproduction of computers, 958
resetting the thermostat, 185
reources, available, 824, 826
restive, 414, 425-426, 432-438, 597
restless, 414, 432-435, 443
Restricted Translation Rule, 261
reversal problem, 809, 810, 817, 818, 820, 826,
827, 831, 832, 839
Reverse Hex, 767
Reverse Othello, 765
Reversi, 765, 760
reversible moves, 55, 56, 60, 62-64, 66, 70, 71,
75, 7T, 126, 212, 415
reverting moves, 425
rhombs, 897, 898
Richardson, J., 765
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Right, 2
boundary, 154-156, 164, 169, 170
excitable, 158, 159
remoteness, 279, 281-283
slant, 158, 159
stop, 149, 150, 152, 163
tally, 301, 302, 304, 310, 314, 317
Rims, 585, 586
ring, 854, 855, 858, 860, 928
rings
and strings, 850, 851
Chinese ;, = Scandinavian 7, 856-861
Rip Van Winkle’s Game = Kayles, 82
ripening plums, 354
Rita, 25, 51, 234, 284, 289, 300, 308
Robertson, Edward, 226
Robinson, Raphael M., 914, 924
Robson, J. M., 763, 764
Rodgers, Tom, 607, 765
Rognlie, R., 762
Rolling Stones, 346
Romantica, 525, 528
Roode, Thea van, xvii, 78, 519
rook, 667
rooster, 899
rooted trees, 604
rose-garden, 525, 537, 538
Rosh Hashana, 909
Rosser, Barkley, 924
Roth, T., 925
round the world, 381
roundabout, 327, 369, 380
row-rank, 710
Roy, Constant, 713
Rozenberg, G., 764
Rubik’s Cube, 868-876, 917, 918
Rubik, Ern6, 868
Ruchonet, 841
Ruderman, Harry D., 769
Rugs, 478
Rule
Atomic Weight, 242
Berlekamp's, 77, 78
C.A.B.S., 388-393
Deficit, 826, 831
Difference, 74, 404
Doomsday, 903-906




Downsum Absorbancy, 361
Flow, 201, 202, 204, 210
Go-dialects, 16
Inequality, 348, 349
Long Chain, 546, 549, 550
loony addition, 399
Mex, 56, 418, 556, 558
Misere Mex, 418
Misére Nim, 418
Misére Play, 15, 279, 281, 413
misére remoteness, 279, 281
Nim-Addition, 59, 73, 390, 418, 556
Normal Play, 12, 14, 278, 279
One-upmanship, 242
remoteness, 279, 281
Restricted Translation, 261
Simplicity, 22, 24, 25, 27, 39, 45, 48, 304,
305, 307, 314, 317
Smith’s, 388-389, 392-393
suspense, 287, 303
Tally, 304, 305, 315, 316, 326
Two-ahead, 199, 200, 242, 246, 249
With, 256, 257
Without, 256, 257
Wrythoft's Difference, 74, 404
Rule of Three, 811, 812, 816, 834
Rule of Two, 811
Ruler
Hights, 470
Fifteens, 470
Fives, 470
Fours, 470
function, 98, 436, 437, 470
Game, 469, 470, 478, 483
Sevens, 470
Sixes, 470
ruler function, 98
rules 14
Li's loopy Hackenbush, 344
Russ, 1., 767
Russia, 894

Sabidussi, G., 539

Sackson, Sidney, 729, 769

Safe Dancing Haven, Fox's, 695
Sakuta, Makoto, 766

Salomaa, A., 764

saltus, 99, 114, 117, 144, 186, 752
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Sarsfield, Richard, 79
Sasaki, Nobusuke, 762, 766
Saskatchewan landscape, 156
Sato’s Maya Game = Welter's Game, 427
Saxon Hnefatafl, 666
scale, Grundy, 87, 89, 91, 94, 96, 100, 398, 399,
406
Scare’'m Hare'm Position, 719-721
Schaeffer, Jonathan, 18, 757, 763, 764
Schaefer, Thomas J., 109, 118, 224, 226, 227
Scarne, John, 769
Schaer, Jonathan, 43
Scheinerman, E. R., 539
Schocken, Wolfgang Alexander, 925
Schoen, Alan, 897-898, 923
Schroeppel, Rich, 939
Schuh, Prof. Frederick, 118, 539, 640, 710, 713,
725, 729, 769, 732, 769
Schuhstrings, 523, 524
Schwenk, Allen J., 539
Scissors-Paper-Stone, 15
score function, 837, 838
Scorer, Richard S., 923
scorpion, posing as insect, 600
Scott, Elizabeth Anne, 869, 871, 875
Scott, Katherine, xvii, 578, 584
scout, 821-823, 835
Scrabble, 760, 765
scrap-heap, 391-392
scrimmage
formation, 687, 697
line of, 687
position, 694, 700, 701
region, high 697, 700, 701
sequence, 687-689, 692, 693, 697, 700, 705
values, 688, 697, 700
Seal, David J., 635, 871, 875, 914
seasoned campaigner, 164
Seating Boys and Girls, 132, 133, 179, 261, 310,
366
Seating Couples, 44, 45, 95, 132, 133, 261
Seating Families, 95, 261
second cousin, 101, 102, 104-106, 114
second player wins, 28-30
Secondoft Algorithm, 535, 537
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secrets
gory, 911
hidden, 844-846, 848, 894, 896, 897, 899
Seemann, Markus, 768
Seki, Hirohisa, T66
Select Boys and Girls, 310-311
selective compound, 299, 300, 312, 396
selective compound, shortened = severed, 312
Selfridge, John Lewis, 522, 740, T67, 768
sente, 161, 187, 188
Seo, Masahiro, 766
separation, 703
Sepoys, see Maharajah, 710
sequence
backbone, 700, 701, 7
early, 688, 689
scrimmage, 687-689, 692, 693, 697, 700, 705
serpent, 899
set
empty, 82, 399
move, Hl6
subtraction, 84, 86, 442
variation, 220, 221
Seven-in-a-Row, 740
Seven-up, 218, 225
severed head, 205, 220, 221, 312
severed selective compound, 312
sex
opposite 132
significance of, 528
shackles, 565
Shader, Leslie E., 925
Shakespeare, William, 905
Shaki, Ahiezer, S., 377
Shannon, Claude Elwood, 740, 763, 767, 960
shatter, 380
She-Loves-Me, She-Loves-Me-Not = -05, 67,
101-103, 113, 116, 529, 607
She-Loves-Me-Constantly, e.g., - 51, 101, 103,
518
Sheep and Goats, 863
see Wolves-and-Sheep, 665, 666
Shephard, Geoftrey C., 509, 539
shifting
by stars, 250, 258
infinitesimally, 177, 198
ships, 928, 931, 933

Shogi, 760, 761, 765, 766
short
chain, 547, 554, 562
hot games, 225
loops, 554
paths, 562
positions, 694
shortened selective = severed, 312
shortlist, 303, 304, 317
short-sighted view, 159, 160
Shortt, Mr., 745, 746
SHOT(S), 738, 739
Shurman, Jerry, 640
Sibert, William L., 446, 451, 452
Sicherman, George, xvii, 640
sickle and sickle, 836
side, 336-337, 340-341, 344-348, 350, 354-356,
369
sidelined king, 661, 663
sidling, 338342, 346, 350, 365, 371-377
Sidling Theorem, 340, 371-373
Siegel's cgsuite, 687, 690, 692, 697, 702, T03,
705, 766
Siegel, Aaron, xvii, 687, 690, 702, 703, 705, 766
sign, 348-351, 373
Silber, Robert, 79
Silver Dollar Game, 491, 492, 535
Silverman, David L., 668
Simoes-Pereira, J.M.S., 607
Simonim = Similar MOwve NIM, 496-498
Simonson, S., 539
simplest form, 19, 22, 71, 370
simplest number, 19, 21, 22, 305, 307, 314
Simplicity Rule, 22, 24, 25, 27, 39, 45, 48, 304,
305, 307, 314, 316-317
simplifying games, 60, 62, 63, 75, 77
singleton, 413
Single Circle, 691
Singmaster, David, 871, 875, 925
sinister, 913
Sipser, Michael, 224, 226
Sisyphus, 346-348
Six-in-a-Row, 740
Six Men’s Morris, 737
Ski-Jumps, 7, 9-11, 14, 15, 19, 27, 40
skittles, 81
slant, right = correct, 163
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slash, |, 6, 163, 366 span, 710
slashes, ||, 130, 163, 366 span-length, 194, 195
Sleator, Daniel, 602, 607 spanning tree of graph, 217, 224
sliding spar, 488
block puzzles, 877-885, 919 spare move, 838
jungles, 199, 220, 221 Sparring, 488
slipper, 9 sparse space, 110-113
Slither, 767 species, 435
Sloane, N. J. A., xvii(3), 489, 767 Spight, William, xvii, 764, 765
slow horses, 286, 288, 289 Spinner, The, 833
slow join, 286-291, 300, 302 spinster, 506, 507
slower join, 283 splitting the atom, 234-236

small, 36, 38, 220-262,
Smallest Nim, 532

Smith Theory, 333, 379-396
Smith’s Rule, 388-389, 392-393 Spots and Sprouts, 95

Sm?th, Alvy Ray, ?60 Sprague-Grundy Theory, 56, 117, 118, 220, 333,
Smlth, Ar‘thur, T65H 556—558‘ 569, 636

spoiler, 161
spokes, 549
spot, 145, 146, 391, 585

Smith, Cedric Austen Bardell, 88, 96-98, 109, Sprague, Roland Percival, 41, 56, 79, 220, 333,
117, 118, 278, 279, 208, 312, 388, 389, 206, 539, 540

391-393, 412, 417, 452, 525, 528, 533, 923 Sprouts, 598602

. . -
Smith, Martin C., 765 Brussels, 603, 604, 607

Smith, Sally, xiii .
' o Squandering Squares, 254
snakes, 40-42, 240, 929 square, T31-765

iﬁzt;&;’zs-gggders’ 14, 386-388 half-perfect, 886, 890
Snatzke, Raymond George, 756, 763 R_:lag,l;:’ 87;;, 886-891
Snort, 47, 145-147, 149,151, 153, 154, 156, 157, a““;f ' L o1
161, 167-169, 177, 178, 180-183, 224, 502 pandiagonat, o:
perfect, 518, 886

dictionary, 147, 180-183
lemmas. 180 quarter-perfect, 886, 889, 890

Solitaire, 15, 503-840 Strong, 713, 717, 718
army, 821-822, 835 Weak, 713, 715, 7T17-721
board, English, 710, 730 square-eater, 643
central, 805-809, 811, 837-839 Squares, MacMahon, 899-902, 921-922
Fool's, 826, 835 Squares Off, 319
-like puzzles, 863 Stability Condition, 363

solutions to problems, 709, 761, 762 stable positions, 705

Soma, 843-846, 897, 910-913 stack of coupons, 693

Somap, 897, 910-913 stage, 392-395

sophistication levels, 569 Stage, early, 689

Soulé, Stephen, 765 Staircase Fives, 499

sound bound for a hound, 723 stalemate = tie, 14

Sowing Games, 761, 766 stalk, 29, 30

spaceships, 931, 933, 936 stalk = stem, 67

spades, xix(1), 359-363 Stalking = -31, 429, 444

Spain, 905 standard form, 101, 103-105, 107-109, 114




998

star, 34, 39, 47, 48, 65, 68, 69, 120, 121, 125,
155, 156, 190, 229, 261
far, 230-232, 236, 137, 239, 243-251, 258,
259
lucky, 246, 249
remote, 230-232, 236, 237, 239, 240, 243—
251, 258, 259
thermorgraph of, 156
Star-Incentive theorem, 259
Star-Shifting Principle, 250, 258
Stars-and-Stripes, 603, 604
starting position, 14
startling value, 39
Stead, W., 925
Steingrimsson, E., 117
Steinhaus function = remoteness, 279
Steinhaus, Hugo, 279, 298, 393
stem, 36, 47, 67, 199, 200, 210, 230, 240, 242
step, 529
Stewart, Bonnie M., 841
still life, 929
Stiller, Lewis, 763
Stockmeyer, Larry, 223, 226, 227
stolid survivor, 829
Stone, John, 112
stones
black = blocking, 642, 644-646, 654-657
Go, 642, 646
lifting, 346
non-static, 661
resetting, 346
rolling, 346
static, 661, 663
strategic, 643, 650, 652, 654, 657, 658, 661
tactical, 643, 652
unlimited supply, 650, 664
useful, 663
wandering = white, 642, 644-646, 648, 650,
654-658, 661, 663
well-placeed, 656
stop, Left and Right, 165, 166, 697
stopper, 337, 340-341, 351-352, 354, 356-357,
362, 369-370
stopping position, 149-153, 156-166
value, 149, 153, 173
Storer, James, 224

Strategic Landing Plan, 694
Geese's, 696
strategic stones, 643, 650, 652, 654, 657, 658,
661
strategy 173, 314
Abacus, 513
copying, 642
Goller’s 408
Hare’s, 718
kite, 243, 244, 246
misére Lucasta, 593
stealing, 406, 556, 616, 744
survival, 371-373
Swivel Chair, 349
symmetry, 3, 194, 547, 550
Thermostatic, 158, 163-167, 183-185, 188,
225
Tweedledum and Tweedledee, 2, 3, 35, 349,
350
winning, 28, 31, 32, 46, 314
streak, 483
Streaking, 483
stream
full, 948
glider, 946
thin, 947
thinning, 946
string, 741-750, 849-858
air on a G-, 97
g-, 524
Hackenbush, 22, 24, 77, T8, 194, 195, 329
of pearls, 522, 523
Strings-and-Coins, 550-555
Strip and Streak, 483, 487
stripping, 708, 814
strong squares, 713
structure of periods, 109
subperiods of nim-values, 109
subselective compounds, 396, 533
subtraction game, 84, 86, 87, 98, 395, 430, 442,
520-532
subtraction set, 84, 86, 442
succour the sucker, 826, 836, 837
suicider, 312, 317, 320, 558
sums
eternal, 46
galvinized, 253
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of games, 31, 120,121, 161, 163, 165, 166, move, 643
220, 277 stone, 643, 652

of nimbers, 42 tactically worthless, 652

NP-hard, 225 tactics, corner, 654

ordinal, 220 tail, 807
Sun Xin-Yu, 640 tails, 396, 402, 404
sunny positions, 397-401, 404 Tait, Hilary, 310
superdominoes, MacMahon's, 899 Tait, Peter Guthrie, 916
superheavy atoms, 333 Take-A-Square, 430, 442
superkos (See also loopiness), 758 take-and-break games, 81-117
superstars, 261 take-away games, 82, 84, 86, 87, 98, 101
surprise exam, 534 Taking Squares, 429
Surreal Numbers, 18 Takizawa, Takenobu, 765
survival, 348, 371-373, 413, 927 tally, 300-326
survivor, stolid, 829 machine, 308, 316, 318
suspense, 173, 277, 287, 288 rules, 304, 305, 308, 315, 316, 325, 326

numbers, 286-289, 292, 294, 315, 317 tame, 417, 422-438, 443-446

rules, 287, 303 tameable, 425, 446
swanpan, 513 Tangrams, 895
Swedes, 666 Tantalizer, The Great, 892-894
Swedish King, 666 Tapson, Frank, 920
Sweets and Nuts, 393-394, 410 tardy union, 312
Swirling Tartans, 476, 477 Tarjan, Robert Endre, 224-226
switch engine, 937 tartan, 476
switches, 121-125, 157, 706 Tartan Theorem, 477
Switching Game, Shannon, 744-746, 767, 768 Tartans, Swirling, 476
Swivel Chair Strategy, 349 tax exemption, 151-155
Sylver Coinage, 15, 539, 609-631, 635-640 Taylor, Andrew, 875-876
Sylvester, James Joseph, 640 Tchouka(illon), 761, 766
Sym, 473, 479 Tego, Theodore, 762
symmetric group, 867 temperature, 124, 125, 131, 151-155, 164-173,
symmetrical player, 547 184, 185, 231
symmetry, 51 =, 706
symmetry rule’s OK, 548 ambient, 164, 165, 188
symmetry strategy, 3, 194, 547, 550 critical, 167-171
Sympathetic Nim, 494 policy, 124-125, 131-132
Sympler, 473, 479 tendril, 564, 567, 568, 576, 57T, 5T
Synonim, 494-496 tendrilled crosses, 582

Tennis, 15

T-move, 165, 184 tentative tally, 306, 310
tabella, 736 tepid component, 326, 327
Tableux de Young, 766 tepid game, 308, 316, 327
Tablut, 666 tepid position, 306
tackle, Phutball, 754 tepid work, 316
Tactical Amendment, 697 terminal position, 2, 7, 28, 41, 416
tactical ternary = base 3, 471, 472, 481

diagram, 691 ternary Gray code, 861
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Ternups, 470-472
tesseract, magic, 891
tesseravore, 642
Test
Remote Star, 246, 248, 249
Uppitiness, 245
Thatcher, J.W., 960
The More the Merrier, 533
Theorem
At-least-one, 258
Decomposition, 565, 567
Don't-Break-It-Up, 213, 214, 216
Euler’s, 571
Fundamental, of Zeroth Order Moribundity,
598
Half-Tame, 435
Harmless Mutation, 562-564
Intermediate Value, 426, 438
Max-Flow, Miin-cut, 201, 205, 211
Mock Turtle, 464, 466
n-, 615
Noah's Ark, 423, 432-435, 443
non-arithmetic periodicity, 115
Number Avoidance, 147-149, 183
on simplifying games, 75-77
p-, 615
Quiet End, 618
Redwood Furniture, 212-214
Sidling, 340, 371-373
Simplest Form, 370
Star-Incentive, 259
Tartan, 477
Thirty-One, 723, 729
Twopins Decomposition, 500, 567
Uglification, 486
Zeckendorf’s, 535
tetromino, 894
Theorem
Beasley’s Exit, 829, 830, 837, 838
Euler's 571, 584
Even Alteration, 511
Quiet End, 618, 629
Thirty-one, 723, 725, 729
theory, Green Hackenbush, 190-196, 201
Theory, Smith, 323, 395
thermal dissociation, 168
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thermograph, 151-159, 161-165, 168-172, 174
176, 184, 185, 187, 358
compound, 164
extended, 161, 162
foundations, 155
four-stop, 158, 159
of oof, 358
thermographic thicket, 176
thermographs of star and up, 156
thermography, 151-174, 176-179, 188, 225, 262,
690
extended, 759
generalized, 759, 764
thermostat, 164, 185

THERMOSTRAT = Thermostatic Strategy, 163—

167, 183185, 187, 188, 224
thinking
backwards, 384
forwards, 384
laterally, 384, 412
thinning a glider stream, 947
third cousin, 101, 103-105, 107, 109, 114, 116
Third One Lucky, 520
thirding, 620
thirteen’s unlucky!, 420
Thirty-One Theorem, 723, 725, 729
Thistlethwaite, Morwen, 875, 876
Three B'ars Problems, 827
thunderbird, 937
Thorp, Edward, 765
Thompson, Ken, 632
Three B’ars Problem, 827
Three Men's Morris, 737
Three Up, 737
Three-Color Hackenbush, see also Hackenbush,
Hotchpotch
Three-Finger Morra, 15
three-quarters, 6, 17
timesstar, nim-product, 475
thumb-twiddling, 405,
thunderbird, 937
Thursday, Maundy, 26
Tic Tac Toe = Noughts-and-Crosses, 114, 94,
731-736, 738, 740, 743, 749
tie # draw, 14
time bomb, 937
time, complete in exponential, 224
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timer, 300,-303, 305-308, 310, 314-318, 322,
325-327
tims, 475
tiniest, 706
tiniest value, 706
Tinsley, Marion, 763
tinted, 38, 39, 47-49, 51, 204, 206, 209, 210
tiny, 353, 357
tiny, 126, 127, 169, 170
-a-quarter, 132
-two, 126
-x, 125
F&G, T06
tis, tisn, 342, 344, 374
Tit-Tat-Toe = Tic-Tac-Toe, 731
toad, 930
Toads & Frogs, 12, 13, 40, 63-65, 67-70, 75,
76, 127-131, 133-137, 367, 375-377, 690,
863
toenail, 158
Toeplitz, Otto, 571, 584
toil, honest, 616
toll, 300-303, 305-306, 318, 310, 312, 315-321,
325
hacking, 686
infinite, 312-320, 325-326
tombstone, 318
toolkit, 690
Top Entails, 396
top row traps, 697
Tortoises, see Hares, 862, 916
Tower of Hanoi, 861
trace, 712, T14-716, 720, 723, 728, 729
tracking, 65, 202, 205, 222
track = path, 202-209, 221, 222
Trading Triangles, 254
traffic lights, 928, 929, 934, 935, 937
trailing, 402, 403
trains, 402, 937
transition
phase, 168
two-ish region, 702
transitional region, 701
translation
by nimbers, 259, 261
by numbers, 149, 153, 158

of four-stop games, 157158
of switches, 123
traps, top row, 697
travesty, 286
Trawick, Charles, 936
Treblecross = -007, 94, 112
tree
Australian, 22, 24, 214
binary, 22, 24
game, 40
green, 191-193
greenwood, 34
infinite, 332
redwood, 214-217
spanning, 216, 222, 224, 746
with extra twig, 214, 216
trey, 357
triamond, 895
triality traps, 714
triality trinumphs, 526
Triamond, 896
Triangles, Trading, 254
triangular numbers, 254, 520
Tribulations, 520, 535
Tricky Six Puzzle, 867, 868, 876
trifurcated range, 705
trifurcated region, 701, 702
Trigg, Charles W., 919
Trim, 534
trimmed, 675
trimmed Delphinium, 686
Triplet Fives, 470
Triplets, 469
Triplicate Dawson’s Kayles, 261
Triplicate Nim, 114, 116
tripling, 620
tromino, 895
Tromp, John, xvii, 673
truth, awful, 416
Tsai, Alice, 765
Tschantz, Steve, 52
Tsyan-Shizi = Wythoft’s Game, 427
tub, 929, 937
Tubergen, G. .J. van, 384, 412
tuft, 502, 504, 506
tumblers, 936
Tuppins = Twopins, 500
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Turing, Alan Mathison, 960
Turn-and-Eatcake, 236
Turning Corners, 473-475, 478
Turning Turtles, 461
Turnips, 470-472, 481-483
Tutte, William T., 538
Tweedledum and Tweedledee, 2, 3, 35
argument, 3, 35, 72
strategy, 349
twig, 192, 193, 196, 213, 216
twigs
pale and pink, 344
redwood, 213, 214, 216
Twins, 469, 478
Acrostic, 473, 474, 483
Twisted Bynum, 236
Two-Ahead Rule, 199, 200, 241
two-dimensional games, 332, 333, 473-487, 632
Two-Dimensional Nim, 332-333
two-ish transition, 701, 702
two and two, 419
Twopins, 500, 501, 564, 566
vine, 546, 566-568
Two place, 713
Tyrrell, J.A., 924

U-turns, 754, 838
Uehara, R., 769
uggles, 483
uglification, 483-487
table, 485
Theorem, 486
ugly product, 483
Uiterwijk, Jos W. H. M., 143, 762, 765, 766
Ulehla, J., 607
Ullman, Daniel, 539
ultimate periodicity, 99, 101, 112, 289, 522,
529, 627, 752
unboundedly unbounded, 610
uncertainty, 230
under, 341, 353
underlying economy, 151
union, 299-326
misére partizan, 312
of variation sets, 605
tardy, 312
urgent, 312, 316
United Kingdom, 894

Index

units, 824
fickle and firm, 424
universal machine, 957
unparted jungles, 210
unpredictability, 934
unproductivity, 825
unrestricted tallies, 314-318
unruly, 116
unsnappable vine, 567
unstable positions, 705
untinted nodes, 50, 204, 206, 210
up, T, 63-72, 150, 155, 229, 232, 234-236, 242,
247, 249-252, 255, 258, 261, 262
up-second, 235, 341
up-onth, 375
up, F&G, 706
upon, 341, 353, 708
upon# = delphinium, 341, 345, 353, 355, 708
uppitiness = atomic weight, 200-211, 221, 222,
230-232, 234-242, 245-254, 258-262
uppity, equally, 242, 245
upset board, 317
upstart equality, 71
upsum, 336, 355, 357, 358, 367
urgent unions, 312, 316
Ussher, Archbishsop James, 905, 925

value 4-13, 17, 19-28, 33, 36-39, 41-45, 47-52,
57, 62-69, 71, 72, 75-T8, 125, 690-710
complicated, 707, 708
early, 700
infinitesimal, 36, 169-171, 173, 229, 539,
690
initial, 698, 699
of Fox-and-Geese, 673
of the Initial F&G Positions, 688
mast, 152-154, 165, 166
mean, 149, 151-154, 165, 166, 188
startling, 38
stopping, 149, 150, 173
tiniest, 706
value versus average, 10
values
Childish Hackenbush, 43, 52
Col, 37-39, 47-51
common, 110-112
Cram, 505, 506
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Cutcake, 25
Domineering, 120-122, 138-142, 177
entailed, 397404
exceptional, 90-92, 101, 108
excluded, 111
F&G, circled FOXTAC, 691
F&G, early, 689
F&G, initial, 698-701
Hackenbush, 4-6, 17, 19, 20, 23, 28
irregular, 90-92, 101, 108
loony, 558
loopy, 387, 389-391
Maundy Cake, 26, 220
nim-, 82-94, 96-102, 104-117, 191-196, 230,
387408, 410, 411, 425, 426, 430, 434, 436,
442, 444, 446-450, 462-466, 469-488, 498,
506, 507, 514, 521, 529-533, 537, 557-560,
RGT-569, 579-583, HR86-590, 597, 604-606,
636, 640, 751, 752
Nimstring, 556-560, 564-569, 581-583
non-loopy, 389
putative, 471, 472
rare, 110-112
redwood bed, 216
regular, 90, 91
Seating Boys-and-Girls, 132, 179
Seating Couples, 45
Ski-Jumps, 9-11, 19
small, 36, 229-262,
Snort, 147, 161, 167-169, 177, 180-183
Streaking, 484, 487
Stripping, 484, 487
switch, 121-125
Toads-and-Frogs, 13, 127-131, 133-137
van den Herik, H. Jaap, 740, 765-767
van der Meulen, Maarten, 766
van Roode, Thea, xiii(3), 78, 519
Vandeventer, Joan, 925
Varga, Tamas, 875
vanishing reactions, 941-943, 947-948, 951
variations, 94, 310
variation set, 220, 605 item varieties, 362
victory, 163
vines, 564-570, 575580, 582
virus, 936
voracity, 945
Vout, Colin, 38, 749
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Wainwright, Robert T'., 930, 960

Walden, W. E., 765

Walker, R.J., 924

Wallis John, 925

Walrus, 461-462

Walsh, J. L., 52

waltz -6, 96

wandering stones, 642-6G64

war, cold, 209, 300-302, 304, 306, 307

Ward, Steve, 939

warfare, jungle, 210

Wari, 761

warming, 187

Waterman, Lewis, 760

Watkins, Harold, 925

Weak squares, 713, 715, 717-721

weight, see atomic weight

Weiqi (See Go)

welt, 506

Welter function, 506-508, 510-514

Welter's Game, 427, 506, 507, 510, 514, 515

Welter, C. P., 506, 540

Welton’s Delphinium, 675, 693-695

Welton’s region, 688, 693, 695, 697, 699-702,
704, 705

Welton, Jonathan, xiii, 673, 710

West, Julian, xiii, 144, 584

Whim, 534

Whinihan, Michael J., 540

Whist, 275

white heap, 532

White Knight, 56-59, 278

White, Farmer, 145-147

white stones = wandering stones, 642-664

Whitgift, Archbishop, 905

whole numbers, 19

wholeness of Hackenbush Hotchpotch, 251

width, 164, 184

wiggly line, 560, 581

wild animals, 430-431

wild games, 430-431, 434-435, 437-438

Wilder, Thornton, 414

Willmott, S., 765

Wilson, David, xiii

Wilson, Neil Y., 118

Wilson, Richard M., 867, 876, 925

win quickly!, 278
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Windows, 478, 479, 481
winners and losers, 748
winning post, 395, 411
wire and string puzzles, 849-861
Wolfe, David, xvii(3), 18, 141, 143, 188, 224,
225, 227, 690, 710, 763-765
Wolves-and-Sheep, 665, 666
women
beautiful and intriguing, 524
other, 44
wonders, numberless, 119
working out a horse, 28
world
lost, 413-414
small, 229-262
World Games Review, 756
worthwhile move option, 213-216
worthy prelate, 905
wrestling match, Paterson's, 902
Wright House, 372
Wyt Queens, 59, 60, 74, 402, 427-428
Wrythoft’s Difference Rule, 74, 404
Wythoft’s Game, 15, 60, 74, 427
Wythoff, W. A., 74, 79
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Yamasaki, Yohei, 427, 430, 454, 540
Yanai, K., 766

Yedwab, Laura J., 188, 224, 227
Yeong-Nan, Yeh, 767

Yes!, 53, 112, 348

Yesha, Y. 224, 226

Yoshimura, J., 762

You-nit, 609

Zamkauskas, Walter, 756
Zeckendorf algorithm, 535, 537
Zeckendorf Theorem, 535
Zeilberger, Doron, 640
zero, 2, 7, 19, 28-35, 41

deriders of, 483

game, 7

place, 713

position, 2, 3
Zetters, T.G.L., 740, 768
Zieve, Michael, 118, 540
zigzag, 177
Zig-Zag, 632
zoo, Good Child’s, 427
Zuzarte, Maria S.N., 607




